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A B S T R A C T   

Background: The emergence of single-cell technology offers a unique opportunity to explore cellular similarity 
and heterogeneity between precancerous diseases and solid tumors. However, there is lacking a systematic study 
for identifying and characterizing similarities at single-cell resolution. 
Methods: We developed SIMarker, a computational framework to detect cellular similarities between precan
cerous diseases and solid tumors based on gene expression at single-cell resolution. Taking hepatocellular car
cinoma (HCC) as a case study, we quantified the cellular and molecular connections between HCC and cirrhosis. 
Core analysis modules of SIMarker is publicly available at https://github.com/xmuhuanglab/SIMarker (“SIM” 
means “similarity” and “Marker” means “biomarkers). 
Results: We found PGA5+ hepatocytes in HCC showed cirrhosis-like characteristics, including similar transcrip
tional programs and gene regulatory networks. Consequently, the genes constituting the gene expression pro
gram of these cirrhosis-like subpopulations were designated as cirrhosis-like signatures (CLS). Strikingly, our 
utilization of CLS enabled the development of diagnosis and prognosis biomarkers based on within-sample 
relative expression orderings of gene pairs. These biomarkers achieved high precision and concordance 
compared with previous studies. 
Conclusions: Our work provides a systematic method to investigate the clinical translational significance of 
cellular similarities between HCC and cirrhosis, which opens avenues for identifying similar paradigms in other 
categories of cancers and diseases.   

1. Introduction 

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful 
for characterizing cellular diversity of tumors at single-cell resolution. In 
recent years, an increasing number of single-cell transcriptome studies 
have been focused on the investigation of links between pre-cancerous 
lesions and cancer samples. For example, Li et al. reported shared 
cellular networks of gastric cancer and pre-cancerous lesions in epithe
lial cells [1]. Li et al. found that AT2 cells is the most likely origin of 
cancer cells in the development of lung adenocarcinoma [2]. Becker 
et al. used multi-omics single-cell datasets from healthy, adenomas, and 

colorectal cancer to discover the progression from pre-CAF to CAF [3]. 
Sun et al. unveiled the progression of CAFs, myeloid cells and T cells in 
the immune microenvironment between pre-cancerous lesions and oral 
cancer [4]. These studies extend our understanding about the molecular 
mechanisms of cancer initiation and progression. However, there is still 
lacking a useful and systematic toolkit for characterizing cellular simi
larities of tumor microenvironment between precancerous diseases and 
solid tumors. Application of cellular similarities in translational research 
remains a challenge. 

HCC is one of the most leading causes of cancer deaths globally [5]. 
As shown in Table S1, lots of clinical reports revealed that cirrhosis is 
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one of the most important risk factors for HCC [6–16]. Many studies 
have reported similar signaling pathways between cirrhosis and liver 
cancer (Table S2). To improve the prognosis of HCC, it is important to 
develop biomarkers to distinguish HCC samples from patients with 
cirrhosis. It has been reported that tissue biopsy is important for early 
diagnosis of HCC. However, due to the inaccurate biopsy location for 
adjacent non-tumor tissues such as cirrhosis and normal of HCC, the 
false negative rate of diagnosis could be about 30%–50% [17]. Previous 
studies have explored several diagnostic biomarkers based on tran
scriptomes. Hoshida et al. identified a 186-gene signature to predict 
outcomes of patients with HCC and patients with early-stage cirrhosis 
[18]. Ning et al. developed a risk signature for early prediction of HCC 
development in early-stage cirrhosis patients [19]. These reported 
diagnostic biomarkers were based on risk scores summarized from 
expression levels of signature genes, which depends on data normali
zation due to experimental batch effects. These kinds of risk classifica
tion methods could not be diagnosed at the individualized level. Recent 
studies have reported the within-sample relative expression orderings 
(REOs) of genes are robust against to experimental batch effects, which 
could be directly applied to samples at the individualized level [20,21]. 
Moreover, the REOs-based risk model has been applied in the 
scRNA-seq. Wang et al. have proposed single-cell pair-wise gene 
expression (scPAGE) to aid in diagnosing acute myeloid leukemia [22]. 
We previously developed single-cell gene pair signatures to predict 
recurrence risk for colorectal patients [23]. Few studies focus on how to 
develop individualized biomarkers based on scRNA-seq for HCC. Most of 
studies relied on bulk transcriptomes or statistical studies of clinical 
information [24–33] (Table S2), which might partially obscure the 
characteristics of different cellular subpopulations. scRNA-seq technol
ogy could assist us in finding the cellular and molecular characteristics 
of microenvironment within cirrhotic and liver cancer samples. In this 
study, taking hepatocellular carcinoma (HCC) as a case study, we 
developed a novel computational workflow to identify diagnosis and 
prognosis biomarkers based on cellular similarities between HCC and 
cirrhosis. 

2. Materials and methods 

2.1. Datasets collection 

In Table S3, the scRNA-seq data of healthy, cirrhosis, and liver cancer 
samples from Gene Expression Omnibus (GEO) were summarized. 
GSE136103 and GSE151530 were used as discovery datasets. 
GSE156337, GSE166635, GSE149614 and Mendeley Datasets were used 
as the validation sets [34–37]. In addition, we collected a dataset 
(GSE134520) of gastric cancer with different stages including intestinal 
metaplasia (IM), non-atrophic gastritis (NAG), chronic atrophic gastritis 
(CAG), and early gastric cancer (EGC), totaling 32,332 cells [38]. The 
colorectal cancer (CRC) dataset (GSE201349) consists of samples from 
70 specimens at normal, tubular adenomas, and carcinoma sites, with a 
total of 201,884 cells [3]. 

Seventeen independent bulk transcriptome datasets were collected 
from the GEO and TCGA databases, as described in Table S4. For the 
prediction of cirrhosis progression to HCC, gene expression profiles of 
216 patients with hepatitis C-associated early cirrhosis were available in 
GSE15654. In this dataset, 65 patients with cirrhosis eventually devel
oped HCC were collected. To develop biomarkers for diagnosing HCC 
patients at an early stage, we collected four kinds of tissue samples: HCC 
tissues, adjacent cirrhosis tissues of HCC patients (CHCC), adjacent 
normal tissues of HCC patients (Adj) and cirrhosis tissues of non-HCC 
patients (CoHCC). The corresponding sample numbers for each kind of 
tissue were shown in Table S4. Among these datasets, samples from 
GSE54236, GSE64041 and GSE15654 were biopsy specimens. The 
remaining datasets were surgical resection samples. For the prognosis of 
early-stage HCC patients, we collected 572 samples with survival in
formation from TCGA, GSE116174, GSE14520, and GSE76427 

(Table S5). The details of HBV, HCV or non-viral for HCC patients were 
summarized in Tables S3–4. 

2.2. Preprocessing of single-cell RNA datasets 

Cells with fewer than 300 detected genes were excluded. Gene 
expression level was calculated as the fraction of its unique molecular 
identifier (UMI) count with respect to the total UMI count, which was 
then multiplied by scale and log2-transformed. Normalization, selection 
of highly-variable genes, dimension reduction and clustering of single- 
cell transcriptome data was performed using Scanpy, a Python-based 
package [39]. FindIntegrationAnchors function in Seurat was used to 
correct the batch effect among samples from different resources. Then, 
major immune cell types were annotated according to these markers 
[40–44]: Hepatocyte (ALB, TF, TTR), Cholangiocyte (EPCAM, KRT19, 
CD24), T cell (CD3D, CD3E, CD3G), Mesenchyme (PDGFRB, ACTA2, 
COLIA1), Endothelial (PECAM1, CDH5, ICAM2), B cell (CD79A, CD79B, 
CD19), MPs (CD68, CD14, ITGAX), etc. Minor cell subpopulations were 
named according to the marker genes found by re-clustering (Table S6). 
Finally, the accuracy of the annotated results was checked by using sc. pl. 
correlation_matrix function. For datasets of gastric cancer and colorectal 
cancer, the labels of cell annotations were obtained from the original 
studies [3,38]. 

2.3. Preprocessing of bulk transcriptome datasets 

For the Affymetrix microarray datasets, the Robust Multi-array 
Average algorithm [45] was used to normalized the matrix. For the 
RNA-seq datasets, we normalized the matrix by vst method from DEseq2 
package [46]. Clinical information including gender, age, disease stages, 
history of cirrhosis and survival time were summarized in Table S5. 

2.4. Overview of SIMarker construction 

SIMarker consists of three main parts (Fig. 1). 

2.4.1. Part 1: identification of cirrhosis-like subpopulations 
In order to calculate the similarity of two target subpopulations from 

cirrhotic and liver cancer samples, we designed a modified statistical 
method based on the hypothesis that cells resemble transcriptome 
characteristics in different samples might have similar microenviron
ments or niches [47]. We firstly normalized the raw count expression 
matrix, then screened the genes with coefficient of variation ranked at 
top 500 by calculating hvg = sd/mean. The top 500 genes with high 
specificity for all subpopulations were further screened using Entropy 
Weighting method (1, 2). After that, a query-reference framework based 
on k-nearest neighbors (KNN) was employed: healthy/cirrhosis sub
populations were used as reference objects and tumor subpopulations 
were used as query. Each object (O = {(x1,y1),(x2,y2),…,(xN,yN)}) have 
N cells (x) and labels (y). The K cells closest to x in the reference object 
according to the Euclidean distance were searched (3), and the set 
represented by k cells was denoted as N_K(x), Similarly, 10-fold 
cross-validation was employed to select the optimal K value during 
each cell type query. Then, cell (x) was determined to belong to which 
particular cell subpopulation (y) based on the majority voting principle 
(4). A phenotypic marker index for each query type was defined by 
calculating the proportion of query cells labeled with the corresponding 
sample type. In addition to KNN, we offered other commonly used 
clustering methods including Partition clustering, Hierarchical clus
tering, Mixture models, Density-based and Neural networks to calculate 
cellular similarity (Table S7). The performance of these methods was 
compared in the datasets of gastric cancer, colorectal cancer, and he
patocellular carcinoma, respectively. 

H(x)= −
∑n

i=1
pi logn pi (1) 
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Wi =
1 − Ei

k −
∑

Ei
(2)  
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k=1
(xk − yk)

2

√

(3)  

y= argmax
∑

xi∈Nk(x)

I
(
yi, cj

)
, i= 1, 2,…,N; j= 1, 2,…,K (4)  

2.4.2. Part 2: screening and interpreting cirrhosis-like signatures 

2.4.2.1. Definition of cirrhosis-like signatures. Genes within the gene 
expression program from cirrhosis-like subpopulations, were defined as 
cirrhosis-like signatures (CLS). We dissected gene expression programs 
based on non-negative matrix factorization (NMF), which were repeated 
100 times for each cell type and a set of consensus programs were 
computed by aggregating results from all 100 runs. The cNMF v1.4 
python package was used to perform the analysis of consensus NMF 
[48]. The optimal number of programs were determined for each cell 
type by maximizing stability and minimizing error of the cNMF solution 
as well as ensuring the programs were biologically coherent. 

2.4.2.2. Jaccard similarity for cirrhosis-like subpopulations. Transcrip
tional similarity between two subpopulations were also evaluated by the 
Jaccard similarity coefficient (5). We further selected marker genes for 
cirrhosis-like subpopulations using scanpy. tl.rank_genes_groups function. 

We selected top 60/100/200 marker genes according to the character
istics of subpopulations of different scales. A and B represented marker 
gene lists of subpopulations. 

J(A,B)=
|A ∩ B|
|A ∪ B|

(5)  

2.4.2.3. Gene regulatory network inference analysis. Single-cell regula
tory network inference and clustering (SCENIC) [49] from the python 
package ‘pySCENIC’ was used to explore similar characteristics at the 
gene network regulatory level. The potential transcription factors were 
found by GENIE3 using co-expression between genes. The 
high-frequency motifs appearing near the gene transcription initiation 
site were used. The motifs (NES>3) found in the database were 
compared to calculate the regulators enriched by the target gene. 
Finally, based on the expression value of the gene, the specific regulator 
activity specific to each cell was calculated with AUCell function. To 
obtain the correlation between each subpopulation, Spearman correla
tion was used. 

2.4.2.4. Deconvolution of cell abundance. Normalized gene expression 
matrix from 33,686 single cells, belonging to 21 HCC subpopulations 
were used for GSVA [50] function. Deconvolution was performed on 
bulk transcriptome, including 572 samples from 4 cohorts (TCGA, 
GSE14520, GSE116174, GSE76427). The abundance of the 21 HCC 
subpopulations were normalized to a sum of 1. The score represents the 
estimated proportion for each cell type. The normalized HCC cell type 

Fig. 1. The framework of this study. 
The workflow of SIMarker. The workflow was drawn at https://biorender.com. “SIM” means “similarity” and “Marker” means “biomarkers. 
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compositions of these patients were used for the PCA analysis. Euclidean 
distance was used to detect neighbors. We project the query dataset onto 
the PCs of the reference dataset to assign the corresponding cluster 
labels. 

2.4.3. Part 3: clinical applications of cirrhosis-like signatures 
In this study, we used the CLS obtained from cNMF as input, and we 

developed three kinds of individualized biomarkers independently 
(Fig. 1): ① Risk prediction of cirrhosis progressing to HCC; ② Accurately 
distinguish cirrhosis without HCC (CoHCC), HCC, HCC adjacent and 
HCC accompanied with cirrhosis (CHCC) in biopsy and surgical samples; 
③ Prognosis of HCC patients with early stage. Here, we used k-TSP to 
screen out candidate gene pairs in different bulk transcriptome datasets, 
and feature importance scores of gene pairs were generated by XGBoost 
to indicate the usefulness of each feature in constructing the model. 

2.4.3.1. Conversion of gene pair matrix. We converted the gene expres
sion matrices into gene pair matrices. G represents the genes from CLS. 
Specifically, the transcriptome profile E ∈ RK×N composed of the 
expression levels of K (G = {g1, ⋯,gK}) in N samples (P = {p1, ⋯,pN}), L 
denotes the largest number of gene pairs, and i, j∈ {1,⋯,K}, the gene 
pair matrix M (6) was built based on the order value as follows: 

MLN =

{
1,Eik − Ejk > 0
0,Eik − Ejk ≤ 0 (6)  

2.4.3.2. Feature selection based on k–Top Scoring Pairs. k-Top Scoring 
Pairs (k-TSP) [51] is a classification method for making predictions from 
transcriptome data based on a set of gene pairs. Each of relative 
expression orderings (REOs) of gene pairs is associated with one of the 
two categories (for example: cancer and normal). The k-TSP prediction 
rule, is a voting summary of this separate two-feature decision rule 
based on conversion of REOs. K-TSP, as well as its precursor, Top Scoring 
Pair (TSP), relies on the ranking of only a fraction of features, making it 
robust across datasets. Compared to TSP, k-TSP has comparable accu
racy to standard classification methods. In this study, we used the CLS as 
input for k-TSP-based prediction, using the R package ‘switchBox’ [52]. 

2.4.3.3. Predicting model based on XGBoost. Firstly, we set the following 
labels for each sample: Part1: cirrhosis: “0”, HCC: “1”; Part2: CoHCC: 
“0”, HCC: “1” and tissues from HCC patients: “1”; Part3: survival: “0”, 
death: “1”. True positive (TP) means that the predicted label “1” is 
correct and false positive (FP) means that the predicted label “1”is 
wrong. True negative (TN) means that the predicted label “0” is correct 
and false negative (FN) means that the predicted label “0” is wrong. Each 
point on the ROC curve represents a random pair of sensitivity and 
specificity values (7,8), and the Accuracy was calculated as follows: 

Sensitivity=
TP

TP + FN
(7)  

Specificity=
TN

FP + TN
(8) 

We randomly divided the bulk data into training cohort, test cohort 
and validation cohort as described in Table S4. In order to select the 
optimal number of gene pairs, we repeated XGBoost based on the 
highest number of gene pairs that could be found by k-TSP, and made 
selection based on the best predicted value (Accuracy = Predicted label/ 
Actual label) (9). Extreme gradient boosting (XGBoost, https://xgboost. 
read thedocs. io/en/stable/index.html), is an ensemble algorithm of 

Accuracy=
TP + TN

TP + FP + TN + FN
(9)  

decision trees. The final prediction of a specific instance is the sum of the 
predicted values in each tree. Next, we measured the accuracy on the 
training, test, and validation cohorts by calculating the area under the 

receiver operating characteristic curve (AUC) based on ROC or time- 
dependent ROC. 

After that, the prognostic and predictive values of gene pairs were 
built by using the regression coefficients derived from XGBoost analysis 
for each sample based on the training cohort. The risk score formula was 
established as follows: 

Risk score=
∑

j
Coefficient (j) × order value of gene pair (j). (10) 

The coefficient of gene pair (j) is the regression coefficient of the 
gene pair (j), and the order of the gene pair (j) is from the transformed 
gene pair matrix M(6). The risk score of each sample was calculated by 
using the ‘predict’ function from XGBoost R package. We selected 50% 
of risk score as the thresholds for high and low risk classification in Part1 
and Part2 by ranking the risk scores in descending order. In Part3, we 
selected the risk score with the best generalization ability in the testing 
set as the threshold. Survival curves were estimated using the 
Kaplan–Meier method and were compared using the log-rank test. 
Multivariate Cox regression analyses were used to examine whether the 
risk model was an independent prognostic factor. 

3. Results 

3.1. Detecting cellular similarities between precancerous diseases and 
solid tumors 

By utilizing single-cell transcriptome data from diverse samples, the 
core analysis of similarity is clustering cells. Here, we employed 
commonly used clustering techniques including Partition clustering, 
Hierarchical clustering, Mixture models, Density-based and Neural 
networks to tackle this challenging task (Table S7). 

To demonstrate the capability of SIMarker to detect cellular simi
larities, we used cancer cells, mesenchymal stem cells (MSCs) and pro
liferative cell as positive controls in a comparative analysis of gastric 
cancer and the corresponding precancerous lesions reported by Zhang 
et al. [38]. The similarity between MSCs subpopulations at IM stage and 
EGC subpopulations at EGC stage was observed through connectivity 
analysis (Fig. S1A), which consisted with the previous finding. In addi
tion to KNN, we also used other four clustering methods including 
CellTree, TSCAN, Monocle and scDeepcluster (Table S7). Interestingly, 
we found that KNN-based method was more consistent with the original 
findings compared to other methods (Fig. S1A). Then, we used SIMarker 
to identify cellular similarities in the CRC dataset. Becker et al. identified 
an enrichment of stem-like epithelial cells and a depletion of mature 
enterocytes in cells originating from polyps and CRC samples [3]. In the 
different stages of the CRC samples, we found that KNN could better 
align with the results of previous studies compared with other methods, 
reproducing a higher similarity in MSCs with cancer cell types at IM 
stages (Fig. S1B). These results demonstrate the feasibility of SIMarker in 
identifying cellular similarities between precancerous lesions and can
cer samples. 

3.2. SIMarker uncovers PGA5+ hepatocytes in HCC exhibit cirrhosis-like 
features 

Single-cell transcriptome datasets from 5 healthy, 4 cirrhosis and 22 
HCC samples, were served as the discovery datasets. These samples 
contained 22,853, 16,522, and 34,287 cells, respectively (Fig. 2A, 
Table S3). Next, we employed lineage specific markers to annotate these 
cells. We identified 8 major cell types, each of which exhibited enrich
ment preferences across different samples (Fig. 2B, Figs. S2A–C, 
Table S6, p < 0.001, Wilcoxon test). Furthermore, we subdivided these 
major cell types into 31 subpopulations in HCC samples and 37 sub
populations in healthy and cirrhosis samples (Figs. S2D–E). 

Then, we applied SIMarker in HCC. Similarly, we also compared the 
performance of five clustering methods between HCC and cirrhosis. Both 
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the KNN and Neural network revealed a high degree of similarity be
tween KNG1+ hepatocytes and PGA5+ hepatocytes (Fig. 1C). Conse
quently, in the subsequent analysis of other cell types, we employ the 
KNN method to calculate similarity across different datasets. 

We observed that in the discovery dataset, PGA5+ hepatocytes 
within HCC samples exhibited higher degree of similarity compared to 
other subpopulations (Fig. 3A and B, Fig. S3). Additionally, they dis
played more pronounced similarities with KNG1+ hepatocytes in 
cirrhosis samples (Fig. 3C). The similar results were obtained in the four 
validation datasets (Fig. 3D). This finding was consistent with the results 
from rat model of drug-induced cirrhosis progression to HCC reported by 
Takuma T et al. (Table S2). They found that the gene dysregulation 
modules were comparable between these two samples, as well as growth 
signals and stress responses were more strongly shared in the hepato
cytes [53]. In addition, we also discovered that IGFBP4+ endothelials, 
C1QC + tumor-associated macrophages and CD4+ central memory T 
cells, exhibited cirrhosis-like features (Fig. 4A–C). 

3.3. Identifying and characterizing cirrhosis-like signatures in PGA5+

hepatocytes 

Results above suggested that hepatocyte subpopulations had the 
highest proportion of similarity between cirrhosis and HCC samples 
(Fig. 5A). We further explored the cirrhosis-like signatures (CLS) in 
PGA5+ hepatocytes using cNMF method. We determined the most 
appropriate number of programs and focused on programs shared 

between PGA5+ hepatocytes and KNG1+ hepatocytes. 9 programs were 
obtained (Fig. 5B and C) and meta-programs 2 had the most similar 
molecular characteristics (Fig. 5D). Pathway enrichment analysis 
revealed that genes within Meta2 program were mainly involved in 
complement and coagulation cascades, tyrosine metabolism, and fat 
digestion and absorption (Fig. 5E). We calculated the Jaccard similarity 
based on specific markers from each gene program and hepatocyte 
subtypes, revealing a strong association between Meta2 and KNG1+

hepatocytes as well as PGA5+ hepatocytes (Fig. 5F). Besides, GSEA was 
performed to confirm that KNG1+ signature gene enriched in the HCC- 
specific gene set compared with other hepatocytes of cirrhosis, like
wise, PGA5+ signature enriched in the cirrhosis-specific gene set 
compared with other hepatocytes of HCC (Fig. 5G). Furthermore, we 
collected two gene sets of cirrhosis related genes from DisGeNET dataset 
(1182 genes for C0023890, 919 genes for C1623038) [54]. We found 20 
genes overlap between our cirrhosis-like genes and genes in C0023890 
dataset (hypergeometric distribution test, p = 4.09e− 8, Fig. S4). For the 
C1623038 dataset, the number of overlapped genes is 8 (hypergeometric 
distribution test, p = 0.00021, Fig. S4). Several overlapped genes have 
been reported to be associated with cirrhosis. RBP4 and TTR involved in 
hormone and vitamin transportation to be altered in patients with 
cirrhosis [55]. The change in ApoA-I and ApoB mRNA level is associated 
with severe alcohol-induced cirrhosis [56]. ApoE genetic poly
morphisms may also influence the progression of liver cirrhosis [57]. 
AZGP1 expression in HCC significantly associated with liver cirrhosis 
[58]. 

Fig. 2. Annotation and composition of cell subpopulations. 
(A) UMAP visualization of cell compositions of healthy liver, cirrhosis and cancer in GSE151530. (B) Cell compositions of cell types in different datasets. 
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Then, we observed that certain regulators exhibited significant reg
ulatory capabilities in both KNG1+ and PGA5+ hepatocytes (Fig. 5H). 
Previous findings revealed XBP1 promoted tumorigenesis through 
increased cholesterol biosynthesis in hepatocarcinoma [59]. Knocking 
out NR2F6 significantly inhibited HCC growth and metastasis [60]. MYC 
has been reported to control the hallmark expression programs 
responsible for cancer development [61]. HNF4A stimulates the 
EGFR-mediated proliferative response during liver cancer development 
[62]. E2F1 promoted HCC cell proliferation, migration and invasion 
[33]. Knockdown of CEBPD promotes cancer cell death [63]. 

We further inferred the abundances of the 37 subpopulations from 
the bulk transcriptomes to explore the prognostic value of cirrhosis-like 
subpopulations (Fig. 6A, Figs. S5–S8, see Method). The correlation be
tween subpopulation abundances and survival status was calculated 
using Cox proportional hazards regression. After dimensionality reduc
tion analysis of the abundance matrices from four datasets (GSE14520, 
GSE76427, GSE116174, and TCGA) (Fig. 6B), we observed that the 
potential cirrhosis-like subpopulations such as PGA5+ hepatocytes, 
IGFBP4+ endothelials, C1QC + tumor-associated macrophages, CD4+

central memory, and CD8+ effector T cells (Fig. 6C). Moreover, we 

Fig. 3. Identification of cirrhosis-like cell subpopulations in hepatocytes. 
(A) Cells from cirrhosis and healthy sample were aligned to cells from HCC samples (reference cells) according to their molecular similarities based on KNN. (B) 
UMAP visualization of the hepatocyte subpopulations within HCC and cirrhosis samples. The red points represent the proportion of cells from each subpopulation 
that can be mapped to cirrhosis samples. (C) Circle plot showing the molecular similarities of various subpopulations of hepatocytes in three tissues in GSE151530. 
(D) Circle plot showing the molecular similarities of various subpopulations of hepatocytes in three tissues in validation datasets (GSE156337, Mendeley, GSE149614 
and GSE166635). 
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Fig. 4. Identification of cirrhosis-like cell subpopulations in other cell types. 
(A–C) UMAP visualization of the Endothelial, MPs and T cell subpopulations within HCC and cirrhosis samples. The red points represent the proportion of cells from 
each subpopulation that can be mapped to cirrhosis samples. Circle plot showing the molecular similarities of various subpopulations of Endothelial, MPs and T cells 
in three tissues in GSE151530 and validation datasets. 
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observed that higher abundances of these subpopulations, particularly 
PGA5+ hepatocytes, were associated with a higher risk of prognosis 
(Fig. 6D). 

3.4. Clinical applications of cirrhosis-like signatures 

Taking the Cirrhosis-like signatures from PGA5+ hepatocytes as 
input, we identified three kinds of individualized biomarkers based on 

Fig. 5. Identification of cirrhosis-like signatures (CLS). 
(A) Proportion of similarity between cirrhosis and HCC samples of different cell types in GSE151530 and validation datasets. (B) t-SNE of hepatocytes colored by 
subpopulations and meta-program 1–9. (C) Heatmap showing correlation of all meta-programs of cNMF and hepatocyte subpopulations of HCC and cirrhosis (k =
15). (D) Percentage of cells within different meta programs between cirrhosis and HCC. (E) GO pathway enrichment analysis of genes within Meta2 program. (F) 
Jaccard similarities of nine meta programs (x axis) with the signatures of ten subpopulations of hepatocyte (y axis). (G) GSEA analysis for HCC and cirrhosis-specific 
gene sets. Genes were ranked by logarithmic fold change in the mean expression values of KNG1+ hepatocyte and PGA5+ hepatocyte, respectively. (H) t-SNE 
visualization of the SCENIC-regulon activity of six regulons (XBP1, NR2F6, MYC, HNF4A, E2F1 and CEBPD) in hepatocyte subpopulations. 

Fig. 6. The PGA5+ Hepatocyte lead axis governs HCC poor prognosis. 
(A) Deconvolution was used to construct the hierarchy of patients and demonstrate the prognostic value of cirrhosis-like subpopulations. (B) PCA of 572 patients with 
HCC from 4 cohorts. (C) PCA of 572 patients with HCC based on the compositions of their cellular hierarchy. (D) Correlation between a prognostic score trained by 
regularized cox regression using HCC subtypes abundances with the PGA5+ hepatocyte lead proportion axis (PC1) within the 4 cohorts. 
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within-sample relative expression orderings of gene pairs (see Method). 
The parameters of each step in SIMarker were summarized in this 
Table S8. 

3.4.1. Construction of a risk signature for prediction of cirrhosis progression 
to HCC 

First, the 216 cirrhosis patients in GSE15654 cohort were divided 
into a training cohort (N = 152) and a validation cohort (N = 64). Next, 
35 gene pairs were selected as diagnostic features according to the 
process described in Methods (Fig. 7A and B). Based on the set of gene 
pairs described above, we calculated the coefficient weights of each gene 
pair by XGBoost to construct a risk prediction model. In this model, we 
calculated the risk score of each patient in the training set, and patients 
with risk scores greater than the median were classified into the high- 
risk group (N = 57) and those less than the median were classified 
into the low-risk group (N = 95), while the validation set was also 
divided according to this threshold. Strikingly, patients in the high-risk 
group had a shorter time to HCC development than the low-risk group 

(P = 0.0032, Fig. 7C). Multivariate Cox regression analysis also showed 
that our constructed gene pair risk profile was an independent prog
nostic factor for HCC development (HR = 6.40, 95% CI: 1.82–22.55, p =
0.004, Fig. 7D). In addition, the area under the ROC curve (AUC) of risk 
features in the training set for predicting HCC progression at 3, 5, and 10 
years was 0.83, 0.864, and 0.915, respectively. The AUC at 3, 5, and 10 
years of validation dataset were 0.708, 0.802, and 0.8, respectively 
(Fig. 7E). 

Finally, mapping the risk scores constructed by XGBoost back to the 
single-cell datasets of cirrhosis, we still observe that KNG1+ hepatocytes 
(Fig. 7F) exhibit high risk of progression to hepatocellular carcinoma. 
Taken together, these suggests that the risk signatures obtained from 
cirrhosis-like gene pairs has good performance in predicting the pro
gression of cirrhosis to HCC. 

3.4.2. Distinguish CoHCC and HCC in biopsy and surgical samples 
To improve the prognosis of HCC, it is important to develop bio

markers for the diagnosis of HCC at an early stage and distinguish HCC 

Fig. 7. Prediction of cirrhosis progression to HCC. 
(A) Accuracy of the top-ranked gene pairs in the 35 gene pairs selected from the bulk transcriptome by k-TSP. (B) Risk score of gene pairs in XGBoost model. (C) 
Kaplan-Meier analysis of the HCC development time in patients with different risk scores. (D) Multivariate analysis of risk signatures for cirrhosis to HCC progression. 
(E) Time-dependent receiver characteristic operating curves. AUC of the risk scores for predicting the development of HCC in patients with cirrhosis at 3, 5 and 10 
years. (F) UMAP of hepatocytes in cirrhosis based on subpopulations and XGBoost score. 
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samples from cirrhosis patients. The details of the datasets were 
described in Table S4. 37 gene pairs were selected as diagnostic features 
(Fig. 8A–B). Overall, 96.4% of samples in the biopsy-independent vali
dation datasets were correctly classified (AUC = 0.95) (Fig. 8C). For the 
biopsy specimens in GSE64041, 100% of the 120 HCC and HCC adjacent 
samples were correctly classified to HCC. In GSE54236, 99.4% of the 
161 HCC and CHCC samples were classified as HCC, while in GSE15654- 
V, 87.9% of 108 CoHCC samples were correctly classified (Fig. 8D). 

Similarly, for the surgical resection samples, 93.3% of the seven data 
sets with 1572 samples in total were correctly classified (AUC = 0.93) 
(Fig. 8C). As shown in Fig. 8E, there were 268 HCC, 40 CHCC and 243 
adjacent of HCC samples, of which 94.7% were correctly classified as 
HCC In GSE25097. In GSE36376, 99.8% of 240 HCC samples and 193 
adjacent of HCC samples were classified to HCC. In GSE39791, 97.9% of 
72 HCC samples and 72 adjacent of HCC samples were classified to HCC. 
These results suggest that these individualized biomarkers are robust for 
the diagnosis of samples obtained by samples from biopsy and surgical 
resection. 

3.4.3. Prognosis of HCC patients with early stage 
Next, we attempted to investigate the prognosis of HCC at early 

stage. Firstly, 178 HCC samples with early stage in the TCGA dataset as 
the training set，75 TCGA HCC samples as the internal test set, and 
GSE14520, GSE76427, and GSE116174 serve as independent validation 
sets with 174, 53, and 90 samples, respectively. 34 gene pairs were 
selected as diagnostic features (Fig. 9A–B). The AUC for predicting 
survival status in the test dataset and validation datasets were 0.72, 
0.71, 0.73 and 0.66, respectively (Fig. 9C). We could find that patients in 
the high-risk group had a significantly shorter survival time than the 
low-risk group in all four data sets (Fig. 9D). Multivariate Cox regression 
analysis also showed that the risk signatures, compared to those con
structed from other hepatocyte subpopulation markers, was an inde
pendent prognostic factor (HR = 6.07, p < 0.001, Fig. 9E). Mapping the 
risk scores constructed by XGBoost back to the single-cell datasets of 
HCC, we still observe that PGA5+ hepatocytes (Fig. 9F) exhibit high risk 
of progression to HCC. 

Finally, we performed univariate Cox regression on all datasets for 
published models and observed that only our model was significantly 
associated with prognosis in all cohorts, indicating the stability of the 

Fig. 8. Classification of CoHCC, CHCC, HCC, and HCC adjacent samples in biopsy and surgical specimens. 
(A) Accuracy of the top-ranked gene pairs in the 37 gene pairs selected from the bulk transcriptome by k-TSP. (B) Risk score of gene pairs in XGBoost model. (C) The 
performance of the signature in the validation data sets from biopsy (top) and surgical resection (bottom). (D) The classification accuracy in biopsy specimens. The 
biopsy specimens included 141 HCC tissues and 108 cirrhosis tissues from non-HCC patients. (E) The classification accuracy in surgical specimens. The surgical 
resection specimens included 733 HCC tissues and 47 cirrhosis tissues from non-HCC patients. 
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risk signature (Fig. 9G). These results highlighted the robustness of gene 
pair model constructed from CLS, demonstrating superior performance 
compared to nearly all other models across all datasets. 

4. Discussion 

scRNA-seq could help us understand the cell type heterogeneity 
within inter-tumor, intra-tumor, and precancerous tissue, as well as 
provide insights into the inflammatory and tumor microenvironment. A 
crucial challenge lies in characterizing similarity through the integration 
of single-cell transcriptomic data from different sources or periods. By 
aligning cellular subpopulations using KNN algorithm, we found 
remarkable similarity between KNG1+ hepatocytes in cirrhosis and 
PGA5+ hepatocytes in HCC. Furthermore, we proposed a hypothesis that 
similar characteristics of cirrhosis and HCC might provide new bio
markers for cancer diagnosis and prognosis. The gene pair models ach
ieved higher accuracy compared with previous studies based on 
transcriptomes (Table 1) [18,20,64–68]. Compared to clinically used 
markers (AFP, AFP-L3, DCP, Table S9) [69], our model performed better 
than most of the other biomarkers with 88.9% of specificity and 68.4% 
of sensitivity. However, clinically used markers are usually proteins. 
Further analysis is needed to explore the performance of protein 
expression in the gene pair models. 

5. Limitations 

Several limitations should be mentioned. First, the cellular similar
ities deserve further validated in more scRNA-seq datasets of cirrhosis 
and HCC. The viral types (e.g. HBV and HCV), one of risk factors for 
HCC, should be considered in the cellular similarity identification. In 
addition, it has been reported that network-based biomarkers such as 
EdgeMarker [70], could be used to detect early signals for complex 
diseases. These methods could reveal essential mechanisms on disease 
initiation and progression at a network level [71]. More advanced 
methods and cohorts should be used to investigate the clinical value of 
cellular similarities in the future study. Second, the similar transcrip
tional programs should be further validated through spatial and imaging 
technologies. Third, we should notice that gain of cirrhosis-like signa
tures might not necessarily cause worse prognosis for the patients. The 
poor prognostic patients might undergo accumulation of different 
oncogenesis properties during malignant progression. For prediction of 
cirrhosis progression to HCC, only one public dataset was used in this 
study. More cohorts with short-term prediction (e.g. 3 and 5 years) are 
needed to collected to investigate the clinical value of cirrhosis-like 
signatures in the future study. 

Fig. 9. Prognosis of HCC patients with early stage. 
(A) Accuracy of the top-ranked gene pairs in the 34 gene pairs selected from the bulk transcriptome by k-TSP. (B) Risk score of gene pairs in XGBoost model. (C) The 
receiver characteristic operating curves. The information of test set and independent validation set were summarized in Table S4. (D) Kaplan-Meier curves for overall 
survival. Based on the Youden’s index of the training set, each dataset is classified as high (red line) or low risk (blue line) group. (E) Multivariable analysis of 
cirrhosis-like gene pair model. (F) UMAP of hepatocytes in HCC based on subpopulations and XGBoost score. (G) Univariate Cox regression analysis of our cirrhosis- 
like gene pairs model and five published biomarkers in four cohorts (*p < 0.05; **p < 0.01; ***p < 0.001). 
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6. Conclusions 

In summary, we provide a systematic analysis workflow, named 
SIMarker, to quantify similarities between HCC and cirrhosis at single- 
cell resolution. Moreover, robust individualized signatures for early 
diagnosis and prognosis of HCC based on within-sample REOs were 
developed. Our work opens avenues for the exploration of similarity in 
other types of cancers and diseases based on single cell transcriptomes. 
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Table 1 
Comparisons of individualized biomarkers with previous studies.  

Model name AUC or Accuracy Type of signature 
(number) 

Screening Method Prediction 
model 

Datasets 
segmentation 

Application 1: Construction of a risk signature for prediction of cirrhosis progression to HCC 

Genepair_Model training AUC: 0.83 (3 year)/0.86 (5 year)/0.92 
(10 year) 
validation AUC: 0.71 (3 year)/0.80 (5 year)/ 
0.80 (10 year) 

gene pairs (35) single-cell resolution similarity 
genes; k-TSP 

XGBoost 152:64 

Journal of oncology 
Model 

training AUC: 0.77 (2 year)/0.91 (5 year)/0.86 
(10 year) 
validation AUC: 0.83 (2 year)/0.75 (5 year)/ 
0.66 (10 year) 

genes (42) DEG Cox regression 108:108 

Application 2: Distinguish CoHCC and HCC in biopsy and surgical samples 

Genepair_Model biopsy accuracy: 
HCC (98.6%)/CHCC (100%)/HCC_adj (100%) 
surgical accuracy: 
HCC (99.4%)/CHCC (95.3%)/HCC_adj (100%) 

gene pairs (35) single-cell resolution similarity 
genes; k-TSP 

XGBoost 634：389：1572 

Liver interactional 
Model 

biopsy accuracy: 
HCC (92.6%)/CHCC (77.5%)/HCC_adj (100%) 
surgical accuracy: 
HCC (99.7%)/CHCC (96%)/HCC_adj (95.9%) 

gene pairs (19) DEG Majority voting 
rule 

634：389：1572 

Application 3: Prognosis of HCC patients with early stage 

Genepair_Model TCGA: 0.83 
GSE116174: 0.73 
GSE76427: 0.66 
GSE14520: 0.71 

gene pairs (34) single-cell resolution similarity 
genes; k-TSP 

XGBoost 255:53:174:90 

LuJ_Model TCGA: 0.56 
GSE116174: 0.61 
GSE76427: 0.69 
GSE14520: 0.55 

genes (3) DEG LASSO 
regression 

255:53:174:90 

FuXW_Model TCGA: 0.58 
GSE116174: 0.55 
GSE76427: 0.61 
GSE14520: 0.53 

genes (3) DEG LASSO 
regression 

255:53:174:90 

ZhaoY_Model TCGA: 0.62 
GSE116174: 0.65 
GSE76427: 0.62 
GSE14520: 0.61 

genes (9) DEG LASSO 
regression 

255:53:174:90 

DuX_Model TCGA: 0.52 
GSE116174: 0.61 
GSE76427: 0.58 
GSE14520: 0.52 

genes (7) DEG Cox regression 255:53:174:90 

ZhouT_Model TCGA: 0.63 
GSE116174: 0.53 
GSE76427: 0.54 
GSE14520: 0.61 

genes (10) DEG LASSO 
regression 

255:53:174:90  
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.compbiomed.2024.108113. 
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