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Abstract

Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies. There are few recurrence risk signatures for CRC
patients. Single-cell RNA-sequencing (scRNA-seq) provides a high-resolution platform for prognostic signature detection. However,
scRNA-seq is not practical in large cohorts due to its high cost and most single-cell experiments lack clinical phenotype information.
Few studies have been reported to use external bulk transcriptome with survival time to guide the detection of key cell subtypes in
scRNA-seq data. We proposed scRankXMBD, a computational framework to prioritize prognostic-associated cell subpopulations based
on within-cell relative expression orderings of gene pairs from single-cell transcriptomes. scRankXMBD achieves higher precision and
concordance compared with five existing methods. Moreover, we developed single-cell gene pair signatures to predict recurrence risk
for patients individually. Our work facilitates the application of the rank-based method in scRNA-seq data for prognostic biomarker
discovery and precision oncology. scRankXMBD is available at https://github.com/xmuyulab/scRank-XMBD. (XMBD:Xiamen Big Data, a
biomedical open software initiative in the National Institute for Data Science in Health and Medicine, Xiamen University, China.)
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INTRODUCTION
Colorectal cancer (CRC) is the third most common cancer and
a leading cause of morbidity and mortality worldwide [1]. The
implementation of curative resection and adjuvant chemother-
apy has improved the overall prognosis of CRCs. However, about
25–40% of patients would relapse after primary radical resection
[2]. The tumor-node-metastasis (TNM) staging system from Inter-
national American Joint Committee on Cancer/Union for Interna-
tional Cancer Control (AJCC/UICC) remains the most important
guideline for classifying patients and making therapeutic deci-
sions. Unfortunately, due to high heterogeneity in CRC, the clinical
outcomes for patients of the same stage can be very different
[2]. Therefore, there is an urgent clinical need for molecular

biomarkers that predict early relapse in CRC patients for more
precise patient stratification.

The interpatient heterogeneity of CRC has been revealed
by genomic and epigenetic analysis, gene expression profiles
and tumor microenvironment (TME). At the genetic level,
several DNA biomarkers including microsatellite instability (MSI),
BRAF and KRAS mutations, CpG island methylator phenotype
and chromosomal instability have been reported [3]. At the
transcriptome level, Guinney et al. [4] proposed four consensus
molecular subtypes (CMSs) with different molecular and clinical
features. However, the translational values of these molecular
markers remain unclear. It has been reported that MSI only occurs
in a small proportion of CRC patients [5]. CMS has not been
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adequately validated for clinical use [6, 7]. On the other hand,
it is widely recognized that the recurrence risk for early-stage
CRC was associated with TME infiltration patterns [8–11], from
there more reliable biomarkers for early relapse in CRC patients
can be derived. The TME of CRC consists of distinctive cell sub-
populations, including tumor epithelial cells, cancer-associated
fibroblasts (CAFs) and immune cells [12]. Stromal cell signatures
detected from bulk transcriptomes were reported to be associated
with risk of relapse and predict survival time of patients [8].
To explore the prognostic values of these multi-level biological
features of CRC, Dienstmann et al. [9] developed a multivariable
Cox model for disease-free survival (DFS). The results showed that
TME infiltration patterns could represent potent determinants of
the recurrence risk for early-stage CRC. The diversity of the TME
also could be used for classification of cancers regarding progno-
sis [13]. Bruni et al. [13] summarized the prognostic significance
of the major immune components in CRC. Pagès et al. proposed
an immunoscore system based on the density of CD3+, CD8+
or CD45RO+ lymphocytes obtained from immunohistochemistry
staining. They found that the immunoscore showed higher prog-
nostic value than the TNM stage [10, 11]. However, the C-indexes
of this system for relapse-free survival and overall survival (OS)
were only 0.62 and 0.58 in their benchmarking cohorts [10].

Traditional transcriptomes largely depended on the analysis of
bulk tissues, which obscures the signals of distinct cell subtypes.
Single-cell RNA sequencing (scRNA-seq) provides detailed char-
acterization of the heterogeneity of cell transcriptomes, allowing
the assessment of the complex TME [14, 15]. scRNA-seq studies
have been carried out in CRC [16–19], and the main results of
the applications of single-cell RNA technology in CRC have been
summarized in Supplementary Table S1. These studies provide
valuable data source and help in understanding the heterogeneity
of TME of CRC. However, only a few cell types have been reported
to be prognostic and few studies focused on developing TME-
related prognostic models using scRNA-seq data. Application of
scRNA-seq in translational research remains a challenge, partly
due to the low library sizes, high noise level and a large number
of dropouts in scRNA-seq data, which might induce large experi-
mental batch effects. Tan and Cahan [20] developed a method to
annotate cell types by comparing the expression of pairs of genes
within each cell. The relative expression orderings (REOs) of genes
within a sample are robust against batch effects of experiments
[21] and are not affected by the normalization of datasets [22, 23],
making them promising for developing prognostic models using
bulk transcriptome data [24, 25]. Wang et al. [26] proposed single-
cell pairwise gene expression (scPAGE) to improve bulk RNA-seq
data classification in acute myeloid leukemia. The application of
rank-based method in developing prognostic models from scRNA-
seq data remains to be investigated. To the best of our knowledge,
REO-based prognostic risk models from scRNA-seq in CRC have
not yet been studied. In this study, we developed scRankXMBD,
a data analysis framework to detect prognostic subpopulations
and identify individualized recurrence risk signatures based on
within-cell REOs of gene pairs to improve the risk stratification of
CRC patients with stages II–III.

MATERIAL AND METHODS
Preprocessing for scRNA-seq datasets
We collected three scRNA-seq datasets from Gene Expression
Omnibus (GEO) (Supplementary Table S2). The Seurat package
(https://satijalab.org/seurat/articles/get_started.html) was used
to pre-process each scRNA expression profile. Briefly, we filtered

out genes measured in less than three cells. We further removed
low-quality cells with small number of measured genes (<200
genes) and doublets with more than 6000 genes. Cells with more
than 20% mitochondrial gene expression in gene counts were also
removed.

Dimension reduction and annotation
The classic workflow in Seurat was used to perform dimension
reduction and unsupervised clustering for each of the scRNA-seq
datasets. Notably, the optimal value of parameter ‘resolution’ of
FindClusters was determined by clustree [27] package. To ensure
that annotation results could be compared among different
scRNA-seq datasets, we combined manual and supervised
annotations (Figure 1, Step1). In the training dataset (GSE144735),
we identified seven major cell subpopulations according to the
expression levels of classic markers (Supplementary Table S3).
Then, we applied the same workflow in each major cell type to
further reduce dimension and clustered cells into subpopulations
based on several classic markers (Supplementary Table S3). As
tumor-derived epithelial cells were heterogeneous in different
patients, we followed the annotation method from Lee et al.
[17] and used classifyCMS in the CMSclassifier [4] package to
assign a CMS label to each tumor-derived epithelial cell. The
Single Sample Predictor (SSP) was chosen as the classifier.
Furthermore, we performed single sample Gene Set Enrichment
Analysis (ssGSEA) on the CMS-related pathway gene sets from the
CMScaller package [28] to confirm the annotation results. To apply
the established landscapes of cell subtypes to two independent
scRNA-seq datasets (GSE132465 and GSE132257), we used SciBet
[29], a supervised cell type annotation toolkit, to predict cell
identities for cells from training set to query sets.

Bulk transcriptomic data and preprocessing
We downloaded the CEL format files of ten bulk microarray
datasets from GEO (Supplementary Table S2). The expression
values were quantile normalized and log2 transformed by using
the justRMA function in the affy package [30]. We further matched
the probes with gene symbols in expression profiles according
to the platform probes file, respectively. Probes matched to
no or more than one gene were deleted. For a gene mapped
to multiple probes, the arithmetic mean of the values of the
multiple probes was calculated for its expression value. Finally,
we downloaded clinical information files including TNM stages,
gender, age, adjuvant chemotherapy and survival information
(Supplementary Table S2). In this study, we only focused on the
CRC patients at stage II/III and did not receive chemotherapy after
surgery.

Overview of scRankXMBD construction
(i) Identification of cell type specific gene pairs (GPs) with cell
subpopulation-classifying value.

Tumor-derived cells were used to identify cell-subtype-specific
gene pairs (C-GPs). We filtered genes according to the following
criteria: detected in at least 5% of cells; the average expression
value within cell type was larger than a predefined threshold
(0.01 in this study). Next, we used linear least square regres-
sion as implemented in GetClassGenes of SingleCellNet [20], and
selected top 100 discriminative feature genes for each cell type
based on their regression coefficients (Figure 1A, Step2). Then, we
constructed GPs from these 100 genes, and denoted a GP as 1 if
the expression of the first gene of this GP was greater than that of
the second gene (gene1 > gene2), and 0 (gene1 < gene2) otherwise.
We then performed linear least square regression again on GPs
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Figure 1. Workflow in this study.

using ptGetTop of SingleCellNet, and selected top 1000 GPs based
on their regression coefficients (Figure 1A, Step3). Based on this
filtered gene pair expression matrix, we trained a random forest
(RF) classifier for each cell subtype. For GPs in RF classifier of cell
subtypes, we calculated the specific score Sij to indicate how its
average REO in cell subtype j deviates from its average REO across
all cell subtypes as follows:

Sij = Eij −
∑m

j=1 Eij

m
, (1)

where Eij is the average REO for GP i cell subtype j, which is
calculated as

Eij =
∑

c∈Cj
Ri(c)

|Cj| (2)

where | Cj | denotes the number of cells of subtype j, and Ri(c)
represents the REO of i in cell c, respectively. Finally, we select GP
i as a cell-subtype-specific pair (C-GP) for subtype j ifSi ≥ 0.6.
(ii) Evaluation of prognostic value for each cell type.

Let Ga and Gb represent the expression values of gene a and
gene b, respectively. We applied the univariate Cox proportional-
hazards regression model to evaluate the correlation of the REO
pattern (Ga > Gb or Ga < Gb) of each C-GP with the recurrence sur-
vival time of CRC patients. P value was adjusted by the Benjamini
and Hochberg (BH) method. Furthermore, to obtain a sufficient
number of C-GPs to evaluate the prognostic value for all cell
types, C-GPs with adjusted P value less than 0.2 were defined as
recurrence related. Next, we applied the C-GPs of T cells, epithelial
cells, endothelial cells and fibroblasts to a bulk RNA-seq with
fluorescence-activated cell sorting (GSE39396) [31] to evaluate
their cross-platform stability.
(iii) Development of individualized recurrence risk signatures.
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To identify individualized recurrence risk signatures for each
cell subtype, we aggregated C-GPs from three scRNA-seq datasets:

Gj = GD1 j ∪ GD2 j ∪ GD3 j (3)

where Dx and j represent the scRNA-seq dataset x and cell subtype
j, respectively. GDxj represent all the C-GPs of cell subtype j in
scRNA-seq dataset x. In addition, we collected six bulk transcrip-
tome datasets (n = 442) and 80% of which were randomly sampled
as the training dataset while the rest samples were used as the
test dataset. The other three independent bulk RNA-seq datasets
GSE14333 (n = 99), GSE17536 (n = 111) and GSE39582 (n = 264) were
used as the validation datasets (Supplementary Table S2). We
performed the Lasso-Cox model [32] to train a signature, which
was furtherly used to score the recurrence-risk for each patient.
We chose ‘lambda.1se’ as the final penalty for the model and
surv_cutpoint was used to work out the optimal cutoff of the risk
value. We calculated the risk score based on the REOs of C-GPs
and corresponding coefficients for each patient. A patient was
stratified into high-risk group if his risk score was higher than an
optimal cutoff, otherwise low-risk group. After that, we performed
survdiff function to have a log-rank test on these two groups.
Finally, the multivariable Cox proportional-hazards regression
model was used to evaluate whether signature performed as an
independent prognostic factor after adjusting for other clinical
factors including tumor stage, gender, age, primary tumor location
and gene mutations (BRAF, KRAS and TP53) and mismatch repair
status.

Determining cell type abundance from bulk
transcriptome
Based on the high variable genes (HVG)-cell expression matrix
for each scRNA-seq dataset, we inferred the abundance of each
cell subtype in bulk transcriptome profile from the signature
matrix established by CIBERSORTx [33]. Similarly, we applied Cox
proportional hazard model to evaluate the contribution of the
infiltration of each cell subtype to the recurrence survival time.

Prognostic signature enrichment analysis
Here, we hypothesized that prognostic-associated subpopulations
tend to enrich more prognostic-associated genes. In each bulk
RNA dataset, we applied the coxph function from the survival
package on certain gene expression with recurrence time and
status in clinical information. Then, we filtered out the genes with
adjusted P value (BH adjusted) greater than 0.2. For those genes
with hazard ratio (HR) greater than 1, we grouped them into unfa-
vorable gene set, and those with hazard ratio smaller than 1 were
denoted as favorable gene set. Single sample gene set enrichment
analysis (ssGSEA) [34] was performed on average expression of
different cell types from scRNAseq datasets to calculate enrich-
ment scores with prognostic-associated gene sets of different
cell types.

Identifying prognostic-associated
subpopulations using Scissor
Scissor [35], a module to distinguish clinically phenotype relevant
cells in scRNA-seq dataset, was used to calculate the pertinence
relation between single cell in scRNA-seq profile and single sam-
ple in bulk RNA-seq profile. We used default parameters Cox
mode of Scissor to detect prognostic-associated cells in each
scRNA-seq profile.

Evaluation of performance for methods used for
prioritizing prognostic-associated
subpopulations
Besides the methods mentioned above, we used FindMarkers
function from Seurat package to detect the genes differentially
expressed among cell subtypes. We named this method as
Uni-Markers. In addition, marker genes detected by SciBet,
were named as SciBet-Markers. Similarly, we applied the coxph
function to calculate the HR of Uni-Markers and SciBet-Markers
in cell subtypes for each scRNA-seq dataset. To compare the
performance of different methods (CIBERSORTx, ssGSEA, Scissor,
Uni-Markers, SciBet-Markers and scRankXMBD), we performed a
literature review on the prognostic value of several cell subtypes
(Supplementary Table S4). We used ‘R’ (risk) and ‘P’ (protected) to
label the prognosis of each cell subtype. Under this circumstance,
if the current result was consistent with the previous study,
we announced it positive (‘p’ as a proxy) for the prognostic
contribution. If not, it was labeled negative (or ‘N’). Besides, ‘A’
(ambiguous) referred the prognostic value had conflict results in
different scRNA-seq datasets or even cannot obtain the prognostic
classification. ‘U’ (uncertain) represented the prognostic value of
one cell subtype was unclear in prior research. Furthermore, we
calculated three quantitative metrics to assess performance of
these methods:

Accuracy = Cp

Cp+CN+CA
(4)

False positive rate = CN
Cp+CN+CA

(5)

Discordance = CA
Cp+CN+CA

(6)

where Cp represents the number of cell subtypes whose prog-
nostic contribution was in line with previous studies and differ-
ent scRNA-seq datasets, while CN represents the number of cell
subtypes with similar prognostic value among different scRNA-
seq datasets but were inconsistent with previous studies. CA

and CU represent the number of cell subtypes whose prognostic
contribution were evaluated as ‘A’ and ‘U’, respectively.

RESULTS
Cell identity annotation across independent
datasets
Firstly, we manually annotated the major cell types of a scRNA-
seq dataset (GSE144735) (Figure 2). Based on the expression of
classic markers (Figure 2B, Supplementary Figure S1B and C),
four immune cell types (T cells, B cells, myeloid cells and
mast cells) and three non-immune cell subtypes (endothelial
cells, fibroblasts and epithelial cells) were distinguished. Then,
we used SciBet [29] to find the discriminative feature genes
(Supplementary Figure S1A) in the training dataset via E-
test. After that, we annotated two independent scRNA-seq
datasets (GSE132465 and GSE132257) separately (Supplementary
Figure S1A and B). Seven major cell types similar to the
training dataset were obtained and UMAP of classic markers’
expression level for each cell type were also shown (Figure 2B,
Supplementary Figure S1A and B). Next, we reapplied dimension
reduction and clustered each major cell types into minor
subtypes. For T cells, we identified 10 subpopulations: naïve
T cells, CD8+ T cells, CD4+ T cells and others. Furthermore,
CD8+ T cells were separated into Tex (exhausted T cells)
and CTLs (cytotoxic T cells), which were named as GZMK+
CTL and KLRD1+ CTL. CD4+ T cells were separated into four
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Figure 2. Cell type annotation using joint application of manual and automatic methods.

subtypes, including CD4+ Tfhs (follicular T-helper cells) and
Treg (regulatory T cells). Other T cells were separated to γ δ

T cells (gamma-delta T cells) and NK cells (natural killing
cells) (Supplementary Figure S2A and B). We also identified
seven sub-populations of B cells (Supplementary Figure S3A). In
particular, there are two distinct IgA + plasma B cells clusters
(Supplementary Figure S3B). One cluster highly expressed IGLC2
and the other highly expressed IGLL5. Note that the IGLC+ IgA+
plasma B cells cluster was also identified in CRC by Wang et al. [36].

For myeloid cells, we identified dendritic cells and monocyte–
macrophages.

For non-immune cell types, we identified CAFs, eCAF (extra-
cellular CAF) and myCAF (myofibroblast), which were named
based on differential expressed markers [17, 37, 38] (Supple-
mentary Figure S5). Using the markers from Sharma et al.
[39], we identified eight subpopulations of endothelial cells
(Supplementary Figure S6). We found that the distribution of
epithelial cells was heterogeneous among different patients
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Figure 3. Cell subtype specific gene pairs in three scRNA-seq datasets.

(Supplementary Figure S7C); therefore, we separated epithelial
cells from tissues. For epithelial cells from normal tissues,
we applied classic markers [17] to identify subpopulations
(Supplementary Figure S7A). We assigned CMS labels to epithelial
cells from tumors and nearby tissues by calculating the
enrichment score of the CMS-related signaling pathway gene sets.

It turns out that CMS4-like cells enriched genes related to EMT
and TGF-β signaling pathways. CMS2-like cells mainly enriched
genes related to WNT and MYC signaling pathways. CMS3-like
and CMS1-like cells enriched genes related to differentiation
and MSI, respectively (Supplementary Figure S7B). These results
were consistent with Lee et al [17] and in accordance with
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Table 1. Comparison of scRankXMBD with existing methods used for prioritizing prognostic-associated subpopulations based on
single-cell transcriptomes

Methods Input for prognostic analysis Accuracy | False positive rate | Discordance Mean

T cells Myeloids B cells Endothelial
cells

Fibroblasts

CIBERSORTx Cell type abundance 0.14 | 0.29 | 0.57 0.88 | 0.13 | 0.00 0.17 | 0.50 | 0.33 0.33 | 0.67 | 0.00 0.45 | 0.36 | 0.18 0.39 | 0.39 | 0.22
Scissor The similarity between

single-cell data and bulk data
0.00 | 0.00 | 0.00 0.50 | 0.00 | 0.50 0.00 | 0.00 | 0.00 0.00 | 0.00 | 0.00 0.64 | 0.27 | 0.09 0.57 | 0.13 | 0.30

ssGSEA Enrichment scores of
prognostic associated gene
sets

0.71 | 0.14 | 0.14 0.88 | 0.00 | 0.13 0.33 | 0.33 | 0.33 0.50 | 0.17 | 0.33 0.73 | 0.27 | 0.00 0.63 | 0.18 | 0.19

Uni-Markers Genes differentially expressed
among cell subtypes

0.86 | 0.14 | 0.00 0.38 | 0.63 | 0.00 0.33 | 0.67 | 0.00 0.17 | 0.83 | 0.00 0.82 | 0.00 | 0.18 0.51 | 0.45 | 0.04

SciBet-
Markers

Genes for cell subtype
annotation

0.71 | 0.14 | 0.14 0.50 | 0.38 | 0.13 0.17 | 0.50 | 0.33 0.17 | 0.67 | 0.17 0.64 | 0.09 | 0.27 0.44 | 0.36 | 0.20

scRankXMBD Cell-type-specific gene pairs 0.71 | 0.00 | 0.29 0.88 | 0.00 | 0.13 0.50 | 0.17 | 0.33 0.83 | 0.00 | 0.17 0.73 | 0.27 | 0.00 0.73 | 0.09 | 0.18

the conventional understanding of CMS molecular subtypes
[4, 7, 40].

Cell subpopulations were also identified in GSE132465 and
GSE132257 datasets using the same workflow (Supplementary
Figure S8). The proportions of cell subpopulations were shown in
Supplementary Figure S9. As for mast cells with low cell counts,
no further subtypes were annotated.

Prioritizing prognostic-associated
subpopulations based on C-GPs
Firstly, we identified C-GPs (Figure 1, Steps 2–3). SingleCellNet [20]
was used to train RF classifiers for each cell subtype based on GPs
in the three independent scRNA-seq datasets, respectively. Then,
we plotted the precision–recall (PR) curve and calculated area
under the precision-recall curve (AUPR) to evaluate the perfor-
mance of the classifiers. In general, the classifiers performed well
for most cell subtypes (Supplementary Figure S10), suggesting
that cell subtypes could be annotated accurately based on REOs.
We selected C-GPs for each cell type and observed that cell sub-
populations derived from the same major cell type shared some
specific GPs as expected (Figure 3A, Supplementary Figure S11A).
In addition, these cell subpopulations still had their own spe-
cific GPs (Figure 3A, Supplementary Figure S11A). For example,
we randomly selected 20 IgA+ plasma B cells in all scRNA-seq
datasets and plotted the REOs of B2M-IGKC, respectively. It was
found that this GP maintained cross-dataset stability (Figure 3B).
Another example was the specific GP CCL5-GADD45B of CD8+
KLRD1+ T cells. Notably, we observed that the REOs of this GP
were consistent (Supplementary Figure S11C).

Next, for each scRNA-seq dataset, we collected the C-GPs
and correlated them with the recurrence survival time of the
patients in bulk transcriptome datasets using a univariable
Cox model (Supplementary Table S2). The prognostic values of
several cell types evaluated here were in line with previous
studies (Supplementary Table S5). T cells’ subpopulations, such
as CD4+ Tfh and CD8+ GZMK+ CTL, correlated to good prognosis
(Figure 3C). CD4+ Tfh was shown to be an independent prognostic
predictor in breast cancer and correlated to improved prognosis
[41]. CD8+ GZMK+ CTL, a significant component of cell-
mediated immunity, plays a central role in tumor cytotoxicity
[42]. Besides, the results of other cell subpopulations were
consistent with previous studies (Figure 3C). For example, in
B cells’ subpopulations, low-expressed IGLC2 was considered
as a factor correlated to worse prognosis in triple negative

breast cancer patients [43] and the expression level of IGLL5
was positively correlated to tumor size in clear cell renal cell
carcinoma [44]. When it comes to the subpopulations of myeloid
cells, it has been reported previously that Macro_SPP1 correlated
to worse prognosis for CRC patients [18]. As for subpopulations
of fibroblasts, eCAF that highly expressed CST1 was reported
to correlate to worse prognosis and tumor generating in CRC
[45]. myCAF was found to promote cancer development and
progression [46].

scRank XMBD achieves higher precision and
concordance compared with existing methods
The performance of scRankXMBD was compared with five methods
in common practice. Firstly, we used CIBERSORTx to evaluate
the relevance between cell subtype infiltration and prognosis
of CRC patients from bulk transcriptome, which was performed
in most existing studies [47–49]. We found that the infiltration
of a few cell subtypes, such as eCAF and EC_GPIHBP1, correlated
with worse prognosis in CRC patients (Supplementary Figure S12).
Fibro_ADAMDEC1 and EC_IGFBP3 were related to good prognosis
(Supplementary Figure S12). Secondly, the results of ssGSEA
revealed that prognosis-protected genes mainly enriched on the
subpopulations of B cells and T cells (Supplementary Figure S13).
However, the recurrence-related genes mainly enriched on
fibroblasts, myeloid cells and endothelial cells, especially SPP1+
and C1QC+ macrophages (Supplementary Figure S14). Thirdly,
Scissor was used to integrate the phenotype of patients in
bulk transcriptome data and cells in scRNA-seq data. With
Scissor, we observed that Macro_SPP1, Macro_INHBA, Fibro_OGN,
Fibro_SGK1, CAFs, CMS1-like cells and CMS3-like epithelial cells
were related to CRC recurrence. CMS2-like epithelial cells were
related to good prognosis. Interestingly, results of subtypes of
B cells and T cells from Scissor were not associated to clinical
outcome, which may indicate potential limitations of this method
(Supplementary Figure S15). Finally, applying Uni-Markers and
SciBet-Markers, many cell subtypes including CD8+ GZMK+ CTL
and cDC_CD1C were recognized as related to prolong patient’s
DFS time. However, it could not evaluate exactly for CAFs and
some macrophages, which were considered as risk factors in CRC
[8, 50–53].

To have a more systematic evaluation on these methods, we
used three metrics (accuracy, false positive rate and discordance,
Method section) to compare the prognostic value of these
cell subtypes with consensus results from existing literature
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Figure 4. Comparison with the existing methods used for evaluation of prognostic value for cell types.

(Supplementary Table S5). The results showed that scRankXMBD

achieved higher precision and concordance. (Table 1, Figure 4).
Moreover, scRankXMBD ensured the stability cross different
datasets and REO was a reliable signature for specific cell
phenotypes in bulk RNA (Supplementary Figure S16).

Within-cell REOs of GPs predict recurrence risk in
CRC
We used the C-GPs as features of each cell subpopulation
and used Lasso-Cox model to train a signature to predict the
recurrence risk (Figure 1, Step5). Results show that the trained
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Figure 5. Prioritizing recurrence risk -associated subpopulations for CRC patients.

signature for 28 cell subtypes, including CD4+ Tfh and CD4+
IL7R+ T cell, was able to predict the recurrence risk for CRC
patients with early stage (II/III) (Figure 5A). The infiltration of
CD4+ Tfhs was considered as a potent prognosis predictor in
breast cancer [41]. The expression level of IL7R was relevant to

prolonged DFS and OS in lung adenocarcinoma [54]. Besides,
for non-immune cell subpopulations, the low-expression level
of BMP5 was considered as a predictor to worse prognosis in
CRC [55].To further validate the signature derived by scRankXMBD,
we selected Macro_DNASE1L3 as an example. The signature of
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Figure 6. The performance of the individualized prognostic signature from Macro_DNASE1L3 for predicting the DFS of CRC patients.

Macro_DNASE1L3 consisted of 18 GPs (Supplementary Table S5)
and it performed well in training set (n = 354, P value <0.001, log
rank test; C-index = 0.703) and inner test set (n = 88, P value = 0.041,
log rank test). Moreover, it also could separate patients into
high-risk and low-risk groups exactly in three independent
validation sets GSE14333 (n = 99, P value <0.01, log rank test),

GSE17536 (n = 111, P value = 0.003, log rank test) and GSE39582
(n = 264, P value <0.001, log rank test) (Figure 6A and B). The key
parameters of the Lasso-Cox model were shown (Figure S17).
Furthermore, multivariable Cox analysis on our signature and
other clinical factors including age, gender, clinical stage and
genomic biomarkers showed that our signature was still an
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independent recurrence-risk predictor (Figure 6C). Features and
their weights were shown (Supplementary Table S5). Similar
results were observed in CD8+ GZMK+ CTLs and IgA+ IGLC2+
B cells (Supplementary Figures S18 and S19). The lower level
of DNASE1L3 correlated with poorer prognosis in various
cancers including breast invasive carcinoma, hepatocellular
carcinoma, kidney cancer, stomach cancer, lung adenocarcinoma
and sarcoma [56, 57]. CD8+ GZMK+ CTLs were related to the
prolonged DFS [58]. IgA+ IGLC2+ plasma B cells were related
to worse prognosis in CRC [36]. In general, CD8 CTLs have been
extensively studied in the literature, while IgA+ IGLC2+ B cell and
Macro_DNASE1L3 are novel cell subtypes, which could potently
predict the recurrence risk in CRC.

In addition, compared with SciBet-Markers and Uni-Markers,
scRankXMBD showed better predictive results in the recurrence risk
classification task (Figure 5B, Supplementary Figure S20).

DISCUSSION
While TME has been reported to be important for tumor
treatment response and survival of patients [13, 59], bulk tumor-
based transcriptome only provides averaged data and could not
accurately characterize the gene expression of subpopulations of
the TME. The use of scRNA-seq in cancer research has improved
our understanding of the TME [60, 61]. Identifying cell subpopu-
lations that associate with clinical outcome could facilitate the
discovery of cell type targeted therapies as well as prognostic
biomarkers. Most scRNA-seq datasets include fewer than
20 samples, which could not be used to identify the cell subpopu-
lations associated with survival time for the lack of statistical
power. Therefore, it is necessary to take full use of valuable
clinical information to prioritize cell subpopulations from
single-cell transcriptomes. Here, we developed scRankXMBD, a
novel computational method to identify prognostic-associated
cell subpopulations based on within cell REOs. Most of the
previous studies prioritized prognostic-associated subpopulations
based on the proportion of cell types in bulk datasets predicted
by computational methods such as CIBERSORT [62] and MCP-
counter [63] . These methods usually analyzed about 10–
20 cell subtypes due to limited cell-type-specific genes. In
contrast, scRNA-seq enables unbiased transcriptional profiling of
thousands of individual cells from a single-cell suspension, which
allows for more accurate identification of prognostic-associated
cell subtypes. Moreover, compared with exiting methods based
on gene expression levels or cellular abundance, within cell
REOs could be more robust to transfer knowledge from single-
cell to bulk transcriptome. Collectively, these features enable
scRankXMBD to achieve higher precision and concordance in
identifying prognostic-associated cell subtypes from bulk RNA
datasets. To extend the application of scRankXMBD, we will perform
analysis to identify clinically relevant cell subpopulations by
associating with other clinical phenotypes such as chemotherapy
and immunotherapy response in the future.

Recent advances in high-throughput technologies facilitate
the application of molecular biomarkers for prognosis prediction
of CRC. However, most of the reported bulk transcriptional
biomarkers were based on the expression levels of the signature
genes [64–66]. Due to experimental batch effects [67], risk
classification methods depend on data normalization, which
could not be diagnosed at the individualized level [24]. In
contrast, the REOs of genes within a sample are robust against
experimental batch effects and normalization methods [21, 22],
which renders them promising for building robust diagnostic

and prognostic models in bulk transcriptome data across
different platforms including RNA-Seq and mircoarrays [68–
71]. Moreover, a sample could be individually classified without
data normalization based on REOs, which is more in line with
current clinical practice. In this study, we developed single-cell GP
signatures to predict recurrence risk for CRC patients individually.
Our evaluation reveals that compared with existing methods,
the prognostic cell sub-subpopulations identified by scRankXMBD

were highly concordant with more published results in CRC
(Supplementary Table S5). For example, CD4+ Tfh, CD8+ GZMK+
CTL and IgA+ IGLC2+ plasma B cells were related to good prog-
nosis of CRC. Macro_SPP1 and Macro_DNASE1L3 were considered
as risk factors in CRC. Their roles in CRC certainly deserve further
investigation.

Several limitations should be noted. The REOs relied on accu-
rate annotations of cell types and could be affected by the dropout
events in scRNA-seq. Interestingly, in our work, we demonstrated
the stability of C-GPs across different technical platforms and cell
capture strategies, e.g. on microarray data from purified major cell
types. Further study is warranted to validate this result on other
sequencing platforms, e.g. long reads sequencing platforms and
other minor cell types when such data are available.

Key Points

• We developed scRankXMBD (https://github.com/
xmuyulab/scRank-XMBD), a novel method to prioritize
prognostic-associated subpopulations based on within-
cell REOs of gene pairs.

• scRankXMBD achieves higher precision and concordance
compared with existing methods.

• Single-cell gene pair signatures were developed to pre-
dict recurrence risk for CRC patients individually.

• Our work facilitates the application of the rank-based
method in scRNA-seq data for prognostic biomarker
discovery and precision oncology.
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