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ABSTRACT

Drug–drug interactions (DDIs) may cause serious
side-effects that draw great attention from both
academia and industry. Since some DDIs are me-
diated by unexpected drug–human protein interac-
tions, it is reasonable to analyze the chemical–
protein interactome (CPI) profiles of the drugs to pre-
dict their DDIs. Here we introduce the DDI-CPI server,
which can make real-time DDI predictions based only
on molecular structure. When the user submits a
molecule, the server will dock user’s molecule across
611 human proteins, generating a CPI profile that can
be used as a feature vector for the pre-constructed
prediction model. It can suggest potential DDIs be-
tween the user’s molecule and our library of 2515
drug molecules. In cross-validation and independent
validation, the server achieved an AUC greater than
0.85. Additionally, by investigating the CPI profiles
of predicted DDI, users can explore the PK/PD pro-
teins that might be involved in a particular DDI. A 3D
visualization of the drug-protein interaction will be
provided as well. The DDI-CPI is freely accessible at
http://cpi.bio-x.cn/ddi/.

INTRODUCTION

A recent study indicates that drugs are commonly co-
prescribed, and nearly one out of 25 individuals are at risk
of a major adverse reaction caused by drug–drug interac-

tions (DDIs), especially in older patients (1). In addition to
severe adverse reactions, DDIs may result in early termina-
tion of drug developments as well as withdrawal of mar-
keted drugs (2,3). Predicting and discovering DDIs will not
only prevent life-threatening consequences in clinical prac-
tice, but also prompt safe drug co-prescriptions for better
treatments (4,5).

DDIs can be classified into three categories: pharmaceu-
tical, pharmacokinetic (PK) and pharmacodynamic (PD)
(6). Pharmaceutical interactions are usually caused by phys-
ical or chemical incompatibility among the co-prescribed
drugs. PK interactions refer to the perturbations on the
absorption, distribution, metabolism or excretion of one
another, which are usually mediated by PK proteins (7).
PD interactions create antagonistic or synergistic pharma-
cologic effect of two drugs (8) which may involve unex-
pected bindings of the drug molecules with the PD pro-
teins, such as target or off-target proteins (9,10). There are
published computational methodologies predicting DDIs
(4,8,11–17); however, as far as we know, no research has
published the prediction model based only on drug struc-
ture without requiring additional pharmacological or bio-
logical background information of the predicted drug. Also,
there are currently no freely available servers for real-time
DDI predictions.

As many of the DDIs are mediated by unexpected drug-
protein interactions, it is reasonable to utilize such interac-
tome information to make DDI predictions. Therefore, we
introduce DDI-CPI, a server predicting drug–drug interac-
tions via chemical–protein interactome (CPI). The CPI is a
methodology that utilizes in silico simulations to mimic the
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theoretical interaction profile (docking results) of a small
molecule across human proteome (9,18–22). Since CPI has
been applied in predicting drug’s pharmacological effects
such as adverse drug reaction (23–25) and drug reposition-
ing potential (26), we implement the CPI methodology in
the DDI-CPI server. The server collects high-quality struc-
tures of ligand-bindable human proteins from third-party
human curated databases, including PK and PD proteins.
When processing user’s submitted molecule, the server will
calculate the theoretical free energy of bindings for it across
the entire panel of human PK/PD proteins, generating a
vector of interaction strengths for the prediction model.
It can alert the high risk DDIs among user’s molecule
against 2000+ U.S. Food and Drug Administration (FDA)
approved drugs, guiding the safe drug co-prescription.

Compared to other DDI prediction methods, the server
has the following distinctions: (i) It predicts both PK and
PD mediated DDIs; (ii) rather than using sophisticated in-
formation such as pathways or networks, the biological ra-
tionale of the prediction model is simple in explanation,
such as which PK/PD proteins may be involved in this DDI;
(iii) The prediction model used in our server achieves high
accuracies in both cross-validation and independent valida-
tion.

METHODS

Preparation of the library drugs and targets

We collected 2515 library drug molecules (85% are FDA
approved drugs) and annotations with different ionization
states from DrugBank (27) and STITCH (28), and then pre-
pared their 3D structures via Corina online and Vega ZZ
(29). The list of drugs is attached in Supplementary Table
S1.

We also collected 611 high quality ligand-bindable PDB
structures, including 239 human PK proteins and 372 PD
proteins. The PK proteins were Protein Data Bank (PDB)
(30) structures from a published paper with all available
drug metabolite enzymes (31). The PD proteins were dis-
tinct human proteins prepared from the PDBBind database
(32), which contains curated crystal structures with binding
pocket information. All the proteins we selected were based
on the following criteria: (i) all proteins have X-ray crys-
tal structures, (ii) all structures have better resolution than
3.4 Å (89% of the protein ended up with better resolution
than 2.5 Å) and (iii) binding pockets were identified around
the embedded ligands in the crystal structure (25,26). Sub-
sequently, we extracted function annotations for those pro-
teins from UniProtKB (33). The list of proteins is included
in Supplementary Table S2.

Preparation of the CPI

AutoDock Vina is a molecular docking program that has
improved speed and accuracy in comparison to AutoDock
and DOCK (34,35). The docking of all 2515 library drug
molecules across 611 targetable human protein pockets
were constructed using AutoDock Vina (34) with the ran-
dom seed set to 10 000 and other default parameters. We
implemented rigid docking rather than flexible docking to
ensure a reasonable calculation speed. The minimal docking

scores and corresponding docked structures were chosen as
the representative docking results to be displayed later.

The training set for DDI prediction model

We used DrugBank DDIs (27) and obtained 6328 drug
pairs with complete CPI annotations, which was used as the
positive set. According to recent DDI prediction methods
(8,11), we randomly generated 6328 drug pairs that did not
appear in the positive set as the negative set (Figure 1A).
The DrugBank IDs of the drug pairs involved in the posi-
tive and negative sets are attached in Supplementary Table
S3.

Model training and validation

Docking scores for each drug in the training set were gener-
ated against the 611 library targets (Figure 1B). For each
two drugs in drug pair DPi against target Tj, we calcu-
lated the sum S(DPi, Tj) and absolute value of the differ-
ence AD(DPi, Tj) of their docking scores as features. Since
we have 611 library targets, we could generate 1222 features
for each drug pair DPi. In this way, the training set was con-
verted to a matrix containing 12 656 drug pairs as rows and
1222 features as columns with a final column as a depen-
dent variable (Figure 1C). A logistic regression model was
trained based on this matrix for server-side predictions (Fig-
ure 1D).

To validate our method, we randomly held 50% of the
original training data as an independent validation dataset.
For the rest of them, we applied logistic regression using a
10-fold cross-validation to evaluate their performance. The
model was set up with L2-regularization which gives an
increasing penalty as model complexity increases to pre-
vent overfitting. We repeated the cross-validation experi-
ment 100 times to get a mean and a standard deviation of
the area under receiver operating characteristic curve (AU-
ROC) and the area under precision-recall curve (AUPR).
We calculated the accuracy, precision, sensitivity and speci-
ficity measures based on a prediction threshold when the
maximum F-score (harmonic mean of precision and recall)
was achieved. Then we evaluated this model on the indepen-
dent validation data. To obtain the accuracy, precision, sen-
sitivity and specificity measures for the independent valida-
tion set, we used the average thresholds selected in the cross-
validation experiments. Since this independent dataset was
not included anywhere in the training, we used it as a gold
standard to compare with other published prediction mod-
els.

INPUT AND OUTPUT

Users are required to submit a molecular file with specific
formats such as mol, mol2, sdf, pdb and SMILES (Fig-
ure 1E). We utilize free tools including OpenBabel (36) and
Autodock Tools (37) to convert the file into PDBQT for-
mat with Gasteiger charges. An example drug molecule is
provided for a quick test. When a user molecule is submit-
ted, the docking scores of this drug toward all targets in
the database is calculated via AutoDock Vina (34) with de-
fault number of poses (eight or more). This process is sim-
ilar to the inverse- or reverse-docking approach (21,25,38).
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Figure 1. The server workflow showcasing model training and prediction. (A) The 12 656 drug pairs including 6328 DrugBank DDI positives and 6328
randomly generated negatives were prepared. (B) CPI profiles of 2515 library drug molecules across 611 PDB structures were generated using AutoDock
Vina. (C) For each drug pair DPi toward each PDB target Tj, the sum and absolute difference of their docking scores were calculated and used as features.
(D) A logistic regression model was trained based on this training set. (E) When the user submits a molecule, (F) the server calculates the CPI profile
and generates the feature vector. (G) The user molecule is then paired with each of the 2515 drug molecules in library to form 2515 new drug pairs. 2515
feature vectors containing the sum and absolute difference of the docking scores for each drug pair were generated and sent to the trained model to make
predictions.

Here, only the lowest energy scores with the corresponding
poses were selected (Figure 1F) to build the CPI profiles,
which were fed to the server-side classification model to pre-
dict the DDIs (see Figure 1G for detail). The process time
ranges from minutes up to several hours, and an email will
be sent to the user upon completion of the task. Users can
also track the real-time calculation progress online.

The user will be able to view the following outputs:

(i) DDI probabilities of user’s molecule with 2515 drug
molecules in library.

(ii) PK/PD proteins that may be involved in the DDI.
The server can visualize the 3D conformation of each
drug-protein interactions via Jmol (http://www.jmol.
org), with amino acid residues around 6.4 Å of the
molecule highlighted.

RESULTS

Model evaluation

The model obtained an AUROC of 0.861 ± 0.001 and
AUPR of 0.860 ± 0.001 in the 10-fold cross-validation (ac-
curacy: 0.804 ± 0.002, precision: 0.742 ± 0.010, sensitivity:
0.847 ± 0.013, specificity: 0.772 ± 0.012, R2: 0.386 ± 0.002).

Based on the independent validation data, we compared
four prediction methods: (i) P-score that uses side-effect
similarities to measure the connection between two drugs

(39). (ii) S-score that measures the strength of network con-
nections between drug targets to predict DDIs (8). (iii) LR
(S-score and P-score) that integrates P-score and S-score by
a Bayesian probabilistic model and achieves superior per-
formance than previous prediction methods (8). (iv) DDI-
CPI proposed in this paper that analyzes CPI profile to pre-
dict DDIs. The comparisons of receiver operating charac-
teristic (ROC) curves and precision-recall curves are shown
in Figure 2 and all evaluation measurements are summa-
rized in Table 1. We could see that the CPI-based method
outperformed previously-developed computational meth-
ods on different parameters.

Case study: DDI prediction for sertraline

We submitted the drug sertraline to DDI-CPI for a predic-
tion test. The server predicts that sertraline might interact
with isocarboxazid, linezolid and naratriptan. Sertraline is
a selective serotonin-reuptake inhibitor for antidepressant
treatment as well as a substrate of flavin-containing amine
oxidase A (MAO-A) (40,41). By investigating the CPI pro-
files of these predicted DDIs, all of the predicted drugs can
rank the MAO-A targets to the top 20% among all library
proteins in their score vectors (Figure 3), indicating that
these DDIs may be through MAO-A. In fact, literature re-
ported that the three drugs predicted indeed interact with
MAO-A and the interactions between sertraline and other
three drugs do exist (42–44). This case study demonstrates
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Figure 2. (A) The ROC curve comparison for different DDI prediction methods on the independent validation data. (B) The precision-recall curve com-
parison for different DDI prediction methods on the independent validation data.

Table 1. Performance comparison for different DDI prediction methods on the independent validation data

Accuracy Precision Sensitivity Specificity AUROC AUPR R2

P-score 0.677 0.590 0.667 0.683 0.648 0.673 0.074
S-score 0.715 0.578 0.898 0.604 0.697 0.669 0.057
LR 0.744 0.646 0.824 0.689 0.783 0.781 0.132
DDI-CPI 0.805 0.752 0.833 0.784 0.859 0.858 0.383

that our server not only predicts DDIs, but also helps un-
cover part of the mechanisms behind-the-scene by showing
the PK/PD proteins that may be involved in the interaction.

DISCUSSION

Competition between metabolizing enzyme, transporter, or
unexpected off-targets can cause DDIs (7–10,45). Fortu-
nately, DDI-CPI server is the first one to provide real-time
DDI predictions based only on the interactome of drugs
toward a representative collection of PK/PD proteins. It
serves as a complementary tool in addition to current meth-
ods that offers DDIs suggestions, and could help provide
the potential mechanism explanations for any molecules
with a given structure. However, as stated before, the DDIs
may result from alternative mechanisms other than drug–
protein interactions such as pharmaceutical interactions
and drug metabolites (46). To ensure the speed of high-
throughput calculations, we treated the protein targets as
simplified rigid models which are not fully realistic repre-
sentations (47). This assumption, although justified, could
still lead to inaccurate predictions. We are not able to guar-
antee the docking accuracy of the user’s molecule toward all
proteins. Therefore, we recommend users to make the judg-
ment based on the docking scores, the docked positions,
and could even validate the binding in a more sophisticated
docking or wet labs. Nonetheless, we believe the impact of
false docked ligand–protein complexes could be minimized
in our DDI predictions. (i) The false positives exist in both
positive and negative set, thus the noise can be neutralized
during our model training process. (ii) Instead of focusing

on single drug–protein interaction, CPI considers the dock-
ing score vector of the drug toward all available proteins for
decision making, minimizing the impact of outliers.

To evaluate whether the model performance is impacted
by structural similarity of the drugs within a pair, we cal-
culated all pairwise Tanimoto coefficients among the 2515
drug molecules in library and excluded those which have
Tanimoto coefficient >0.75 toward any other molecule. We
performed a 10-fold cross-validation on the new training
set which contains 1620 positives and 1893 negatives. The
model obtained an AUROC of 0.870 ± 0.002 and AUPR of
0.860 ± 0.003 (accuracy: 0.815 ± 0.003, precision: 0.756 ±
0.014, sensitivity: 0.861 ± 0.012, specificity: 0.780 ± 0.016
and R2: 0.410 ± 0.006), which indicates our model is less
likely to be impacted by the structural similarity of the drugs
within a pair.

A fundamental difference between DDI-CPI and DRAR-
CPI (26) is that the object in DDI-CPI is drug-pair instead
of single drug in DRAR-CPI. While DRAR-CPI calculates
the similarity between drugs, DDI-CPI further utilizes the
statistical model to predict the probability of a drug pair
being the true DDI pair. The feature in DRAR-CPI is the
docking score of the drug with each protein, while the novel
definition for feature in this server is the combination of
docking scores between each drug pairs across the entire
protein set.

CONCLUSION

(i) DDI-CPI server can predict DDI potentials between
the user’s drug across 2515 drug molecules in library
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Figure 3. Visualization of the partial CPI for sertraline and the drug that may have interaction with it. All four drugs ranked the MAO protein struc-
tures (2BXR, 2Z5X and 2Z5Y) to the top 20% among all library proteins in their score vectors with the docking scores provided in the figure. Two 3D
visualizations shown here for the two cells in CPI matrix were captured from our server.

(85% are FDA approved drugs), which is supported by
the prediction results from cross-validations, indepen-
dent validations and case studies.

(ii) DDI-CPI can suggest putative PK/PD proteins in-
volved in the predicted DDIs, thus could help decipher
unknown mechanisms of DDI mediated by unexpected
drug–human protein interactions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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