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Abstract

Many enhancers exist as clusters in the genome and control cell identity and disease genes; however, the underlying mechanism
remains largely unknown. Here, we introduce an algorithm, eNet, to build enhancer networks by integrating single-cell chromatin
accessibility and gene expression profiles. The complexity of enhancer networks is assessed by two metrics: the number of enhancers
and the frequency of predicted enhancer interactions (PEIs) based on chromatin co-accessibility. We apply eNet algorithm to a human
blood dataset and find cell identity and disease genes tend to be regulated by complex enhancer networks. The network hub enhancers
(enhancers with frequent PEIs) are the most functionally important. Compared with super-enhancers, enhancer networks show
better performance in predicting cell identity and disease genes. eNet is robust and widely applicable in various human or mouse
tissues datasets. Thus, we propose a model of enhancer networks containing three modes: Simple, Multiple and Complex, which
are distinguished by their complexity in regulating gene expression. Taken together, our work provides an unsupervised approach
to simultaneously identify key cell identity and disease genes and explore the underlying regulatory relationships among enhancers
in single cells.
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Introduction
Enhancers play a central role in orchestrating spatiotemporal
gene expression programs during development and diseases [1–
4]. Many enhancers exist as clusters in the genome to control the
expression of the same target gene, termed enhancer clusters or
super-enhancers (SEs) [5, 6]. While enhancer clusters are remark-
ably widespread features in the genome and provide an effective
regulatory buffer for phenotypic robustness during development
[7, 8], the underlying mechanisms remain poorly understood.

Genome editing using the CRISPR/Cas9 system offers an
opportunity for functionally dissecting enhancer clusters [9].
Several groups, including ours, have utilized genome editing
assays to functionally dissect individual constituent elements
of a couple of SEs [10–18]. These studies suggest the diversity of
enhancer cluster regulatory mechanisms, where the individual
components may act additively, redundantly, synergistically
or temporally. Meanwhile, proximity ligation-based chromatin
interactions have been used to investigate the relationship
among the individual components of enhancer clusters and their
effects on target gene expression [19–24]. We and other groups
uncover hub enhancers, the enhancers with frequent chromatin

interactions, play distinct roles in chromatin organization and
gene activation [25–28]. However, it is infeasible to scale up
these approaches to rigorously test a wide range of enhancers
due to technical limitations, such as the resolution in proximity
ligation-based methods and the scalability in genome editing-
based methods.

With the rapid development of single cell RNA sequencing
(scRNA-seq) and single-cell Assay for Transposase-Accessible
Chromatin using sequencing (scATAC-seq) [29–34], a large number
of single cell chromatin accessibility and gene expression
profiles have been generated in various biological systems [35–
40]. However, these existing studies have largely focused on
connecting enhancers with their target genes [41], but rarely on
the regulatory relationship between enhancers. There remains
a lack of method development to quantitatively assess how
individual elements work together to regulate gene expression.

In this study, we developed a computational method termed
eNet to build enhancer networks based on single-cell chromatin
accessibility and gene expression data. Applying eNet on various
biological systems, we found that the complexity of enhancer
networks can predict cell identity and disease genes. Altogether,
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we proposed the concept of complexity of enhancer networks and
established its functional links with cell identity or disease.

Results
eNet builds enhancer networks based on single
cell multi-omics data
Many enhancers exist as clusters in the genome; however, the
underlying mechanism through which the clustered enhancers
work together to regulate the same target gene remains largely
unknown. To this end, we developed an algorithm eNet to
build an enhancer network for each gene to quantitatively
assess how multiple enhancers work together to regulate gene
expression based on scATAC-seq and scRNA-seq data (Methods).
The enhancer network we proposed is a gene regulation model
that not only delineates the mapping between enhancers and
target genes but also quantifies the underlying regulatory
relationships among enhancers, which differs from previous
studies [5–7, 31]. First, given the scATAC-seq and scRNA-seq
profiles, the enhancer accessibility and gene expression matrix
of single cells were prepared as the input of eNet (Figure 1A).
Second, a set of enhancers were identified, termed a putative
enhancer cluster hereafter, which putatively regulate a specific
target gene within a ±100 kb window based on the correlation
between gene expression and enhancer accessibility in single-cell
data (Figure 1B). Third, we evaluated the enhancer interaction
potential based on their chromatin co-accessibility calculated by
Cicero [41] and determined the enhancer pairs with significantly
high co-accessibility as the predicted enhancer interactions (PEIs)
(Figure 1C). Fourth, an enhancer network was built to delineate
how multiple enhancers interact with each other to regulate gene
expression, where nodes represent enhancers and edges represent
the PEIs between enhancers (Figure 1D). Fifth, the complexity
of the enhancer network was evaluated by two metrics: (i) the
number of enhancers, termed the network size (x-axis), and (ii)
the frequency of PEIs, termed the network connectivity (y-axis),
quantified by the average degree of network [42] (Figure 1E).
Lastly, based on the network size and network connectivity, we
classified the enhancer networks into several modes: Simple,
Multiple, Complex and others (but will not be discussed due to
limited cases) (Figure 1E and F). Intuitively, the complexity of the
enhancer network increased from Simple mode to Multiple mode
by involving more enhancers and further to Complex mode by
increasing the interactions between enhancers. Altogether, eNet
builds enhancer networks to clarify how a putative enhancer
cluster regulates gene expression based on scATAC-seq and
scRNA-seq data.

Cell identity and disease genes tend to be
regulated by complex enhancer networks during
human hematopoiesis
We first applied eNet to build enhancer networks during human
hematopoiesis using a human blood dataset [35], including the
single cell chromatin accessibility and transcriptional landscapes
in human bone marrow and peripheral blood mononuclear cells
(Figure 2A). In total, we built 11 438 enhancer networks during
human hematopoiesis (Figure 2B, Supplementary Figure S1A
available online at http://bib.oxfordjournals.org/). We noticed
several blood-related cell identity or disease genes, such as
BCL11B, ETS1, CCR7 and IL7R displayed obviously large network
size and high-network connectivity (Figure 2B). This inspired the
question that whether cell identity genes tend to be regulated by
complex enhancer networks. To test this hypothesis, we classified

these enhancer networks into three modes: Simple (controlled
by one or few enhancers), Multiple (multiple enhancers but
limited PEIs) and Complex (multiple enhancers and frequent
PEIs). It resulted in 6894 Simple, 2992 Multiple and 1552 Complex
enhancer networks (Figure 2B; Supplementary Table S2 available
online at http://bib.oxfordjournals.org/; Methods). For example,
the CD3E gene, encoding a subunit of the T-cell receptor-CD3
complex, was controlled by an enhancer network consisting of 14
PEIs among 9 enhancers. In contrast, the SERPINE2 gene, encoding
a member of the serpin family of proteins that inhibit serine
proteases, was controlled by an enhancer network containing
the same number of enhancers but only two PEIs (Figure 2C).
Interestingly, the CD3E enhancer network showed significant
higher chromatin co-accessibility than SERPINE2, irrespective
of their indistinguishable chromatin accessibility and similar
enhancer number (Supplementary Figure S1B and C available
online at http://bib.oxfordjournals.org/).

Next, we curated a list of known cell identity genes in
the blood system (Supplementary Table S3 available online at
http://bib.oxfordjournals.org/; Methods) and calculated their
enrichment in the genes regulated by three enhancer network
modes (Figure 2E). We observed that genes regulated by Multiple
mode showed higher enrichment in cell identity genes than those
by Simple mode, which is consistent with previous reports that
developmentally expressed genes are commonly associated with
multiple enhancers [7, 31, 43]. In addition, we found that genes
regulated by Complex mode exhibited the highest enrichment
in cell identity genes, 8.7-fold using the whole genome as the
background (Figure 2E). Similarly, genes regulated by Complex
mode displayed a higher enrichment in blood-related disease
genes curated from DisGeNET [44] than those by Multiple mode
(4.8-fold versus 2.4-fold, P = 3.4E−20, binomial test, Figure 2F).
Notably, these observations were robust to various threshold
values of network size, network connectivity and chromatin
accessibility (Supplementary Figures S2–S4 available online at
http://bib.oxfordjournals.org/). These results suggested that cell
identity and disease genes tend to be regulated by complex
enhancer networks.

Complexity of enhancer networks predicts cell
identity and disease genes
To systematically evaluate the performance of the complexity of
enhancer networks in predicting cell identity and disease genes,
we ranked enhancer networks by network size, network connec-
tivity and overall chromatin accessibility. We then calculated the
enrichment of cell identity and disease genes in the list of top
ranked enhancer networks related genes, using the whole genome
as the background (Figure 2G and H). We found that the genes
controlled by enhancer networks with more enhancers were over-
all preferentially more enriched for cell identity genes (Figure 2G),
which concurs with previous studies [6, 7, 31]. Importantly, net-
work connectivity displayed better performance in predicting cell
identity genes than the network size. For example, the top 50
genes ranked by network connectivity were 77.7-fold enriched in
cell identity genes, compared with those by network size (29.9-
fold). Both the network connectivity and network size showed
remarkably better performance in predicting cell identity genes
than the chromatin accessibility of enhancers in the network.
Similarly, network connectivity displayed the best performance
in predicting blood-related disease genes (6.8-fold in the top 50
genes, Figure 2H). Therefore, these analyses suggest that the com-
plexity of enhancer networks can predict cell identity and disease
genes.
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Figure 1. eNet, an algorithm to build enhancer networks based on scATAC-seq and scRNA-seq data. (A) Input: Preparation of the enhancer accessibility
and gene expression matrix from scATAC-seq and scRNA-seq data. Each row represents an enhancer or a gene, while each column represents a cell.
(B) Node: Identification of putative enhancer clusters regulating a specific target gene based on the correlation between gene expression and enhancer
accessibility. (C) Edge: Determination of the PEIs, the enhancer pairs with significantly high co-accessibility calculated using Cicero. (D) Network:
Construct enhancer network to represent the PEIs among enhancers in a putative enhancer cluster, where nodes represent enhancers and edges
represent PEIs. (E) Network complexity: Calculation of the network complexity by (i) network size, the number of enhancers (x-axis); and (ii) network
connectivity, the PEIs frequency, quantified by the average degree of network (y-axis). (F) Mode: Classification of the enhancer networks into three modes
based on network complexity: Complex, Multiple and Simple, with representative examples shown in the cartoon.
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Figure 2. Enhancer networks during human hematopoiesis. (A) The human blood dataset. (B) Scatter plot of the enhancer networks during
hematopoiesis, where the x-axis represents the network size (log2-scaled) and the y-axis represents network connectivity. Top 10 genes ranked by
network connectivity are labelled, where known blood-related cell identity or disease genes are red-highlighted. (C) Representative enhancer networks
in Complex or Multiple mode. (D) Chromatin co-accessibility of PEIs calculated using Cicero in Complex, Multiple and Simple modes. P-values were
calculated using Student’s t-test. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; n.s., not significant. (E) and (F) Enrichment of cell identity (E) and disease genes (F)
in genes in Complex, Multiple and Simple modes, using the whole genome as the background. The number of cell identity or disease genes and total
genes in each group are labelled on each bar. P-values were calculated using the binomial test. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; n.s., not significant.
(G) and (H) Enrichment of cell identity (G) and disease genes (H) (y-axis) is plotted for top genes (x-axis) ranked by different properties of enhancer
networks, including network connectivity (the frequency of PEIs in this study), network size (equivalent to the enhancer number in multiple enhancers
[7], DORCs [31]) or overall chromatin accessibility of enhancers (similar to the sum of the individual constituent enhancers in SEs [6]). (I) Enrichment of
the diseases/traits-related SNPs curated in the GWAS catalog for enhancers in Complex (hub and non-hub), Multiple and Simple modes, using randomly
selected genomic regions as the control. P-values were calculated using the binomial test. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; n.s., not significant. (J)
Enrichment of blood-related GWAS SNPs. P-values were calculated using the binomial test. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; n.s., not significant.
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Network hub enhancers are functionally
important
Enhancer networks provide an opportunity to study how individ-
ual elements work and then how they interact with each other
to control gene expression. Toward this end, we focused on the
enhancers with frequent PEIs in enhancer networks in Complex
mode, termed network hub enhancers (Methods). We first found
that network hub enhancers displayed significantly higher level of
sequence phastCons conservation [45] than non-hub enhancers
(P = 3.8E−8, Student’s t-test, Supplementary Figure S1D available
online at http://bib.oxfordjournals.org/), suggesting that network
hub enhancers might be more functionally important. Next, we
assessed the enrichment of single-nucleotide polymorphisms
(SNPs) linked to diverse phenotypic traits and diseases in the
genome-wide association study (GWAS) catalog [46], in enhancers
in Complex (hub and non-hub), Multiple and Simple modes. We
observed significantly higher enrichment of blood-associated
GWAS SNPs in enhancers in Multiple mode than those in Simple
mode (P = 2.8E−4, binomial test, Figure 2J), which is consistent
with previous studies [6, 7]. Additionally, the enhancers in
Complex mode (hub and non-hub) showed higher enrichment
in GWAS SNPs associated with blood traits than those in Multiple
mode. In particular, in Complex mode, hub enhancers displayed
higher enrichment of GWAS SNPs associated with blood traits
than non-hub enhancers (6.7-fold versus 5.3-fold, P = 5.8E−3,
binomial test, Figure 2J). These results suggest that compared
with Multiple and Simple modes, enhancers in Complex mode
might be more important in diseases, where hub enhancers are
major functional constituents.

Enhancer network outperforms SE in predicting
cell identity and disease genes
We next compared the performance of predicting cell identity
and disease genes by enhancer networks and SEs [6]. To this
end, we downloaded a list of SEs associated with hematopoiesis-
related cell types from the dbSUPER database [47] and curated
a catalog of hematopoiesis-related SEs containing 2306 SEs
(Supplementary Figure S5D and E, Supplementary Table S4 avail-
able online at http://bib.oxfordjournals.org/). We identified 2159
potential target genes regulated by these SEs using ROSE algo-
rithm [6]. Comparing the genes regulated by SEs or by enhancer
networks in Complex mode, we separated them into three
groups: Complex-only (836), SE-only (1443) and Complex SE (716)
(Figure 3A). The constituent enhancers in these two groups (SE-
only versus Complex SE) showed significantly different chromatin
co-accessibility, but indistinguishable chromatin accessibility
(Figure 3B and C). It might explain the diverse and heterogeneous
mechanisms of SEs, such as cooperative, redundant and hierar-
chical revealed by CRISPR/Cas9 genome editing assays. Strikingly,
genes in Complex-only group displayed significantly higher
enrichment in cell identity and disease genes than those in SE-
only group, while genes in Complex SE group showed the highest
enrichment (Figure 3D and E). Similar patterns that enhancer
networks precede SEs in predicting cell identity and disease genes
were observed in GM12878 cell line (Supplementary Figure S5A–C
available online at http://bib.oxfordjournals.org/). We further
ranked genes by network connectivity, network size, chromatin
accessibility or SE ranks based on H3K27ac signal and found that
network connectivity showed the best performance in predicting
both cell identity and disease genes (Figure 3F and G). These
results suggested that the enhancer networks precede SEs in
predicting cell identity and disease genes.

Enhancer networks based on PEIs remedy the
resolution limitations in Hi-C chromatin
interactions
The proximity ligation-based methods to capture genome-
wide chromatin interactions at high-resolution for the analysis
of enhancer interactions remains difficult and costly [21, 48,
49]. We wonder to what extent the PEIs in eNet analysis
resolve the resolution limitations in Hi-C data. To this end,
we compared enhancer networks based on PEIs and Hi-C data
in GM12878 cell line, where scATAC-seq [31], H3K27ac ChIP-
seq [3] and high-resolution Hi-C data [19] are available. We
observed the high co-accessible enhancer pairs (PEIs) that showed
significant enrichment of Hi-C chromatin interactions (Figure 4A),
indicating the overall concordance between co-accessible pairs
and proximity ligation-based chromatin interactions [41]. For
example, at the locus controlling CCR7, a gene expressed in
various lymphocytes, we predicted 20 PEIs based on scATAC-
seq data, while only 10 chromatin interactions were detected
via Hi-C probably due to the limited resolution at 5 kb level
(Figure 4B and, C). We systematically compared the enhancer
networks based on scATAC-seq and Hi-C data by replacing
PEIs with Hi-C interactions and re-built enhancer networks. We
observed a significant overlap between the genes controlled
by the complex enhancer networks based on PEIs and Hi-C
data (Figure 4D, P < 2.2E−16, Fisher’s exact test). Interestingly,
PEI-only group showed significant higher enrichment of cell
identity and disease genes than HiC-only group, where PEI-with-
HiC showed the highest enrichment (Figure 4E and F). Moreover,
we found that the network hub enhancers derived from PEIs
showed significant higher enrichment of GWAS SNPs than those
from Hi-C data (Supplementary Figure S5F–H available online
at http://bib.oxfordjournals.org/). Taken together, these results
suggested that enhancer networks based on PEIs remedy the
resolution limitations of chromatin interactions in Hi-C data.

Dynamics of PAX5 enhancer network drives gene
expression during B cell lineage commitment
Enhancer networks were built based on single cell multi-omics
data, providing an opportunity to investigate the dynamic role of
enhancer networks in determining gene expression during cell
differentiation. To this end, we focused on B cell differentiation,
from hematopoietic stem cell (HSC), lymphoid-primed multipo-
tent progenitor (LMPP), common lymphoid progenitor (CLP), pre-B,
to B cells (Figure 5A; Methods). The PAX5 gene, a known key regu-
lator for B cell differentiation, specifically expressed in pre-B and B
cells, was controlled by a putative enhancer cluster consisting of
24 enhancers (Figure 5B and C). Then, we built cell-type-specific
enhancer networks by constructing the enhancer networks for
each cell type independently (Methods). Comparing the enhancer
networks specific for each cell type, we observed the sequential
changes in the constituent enhancers during B cell differentiation,
in terms of both chromatin accessibility and network interac-
tions (Figure 5D). Within the PAX5 enhancer network, we noticed
that enhancer E14, constitutively accessible from HSC to B cells,
functions as a network hub enhancer to coordinate enhancer
network interactions to establish the enhancer network gradually
during B cell differentiation (Figure 5D). Interestingly, we found
that the PAX5 enhancer network was almost fully established in
the CLP and pre-B stages, which preceded the gene expression of
PAX5 in pre-B and B cells (Figure 5C and D). It suggests that the
establishment of an enhancer network may drive gene expression
during lineage commitment.
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Figure 3. Enhancer network outperforms SE in predicting cell identity and disease genes. (A) Venn diagram showing the overlap between genes in
Complex mode in Figure 2 in blood dataset and hematopoiesis-related SEs, resulting in three groups, Complex-only, Complex SE (SEs with network
structure) and SE-only (SEs without network structure). (B) and (C) Co-accessibility (B) and chromatin accessibility (C) of the constituent enhancers in
three groups, using regular enhancers as control. P-values were calculated using Student’s t-test. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; n.s., not significant.
(D) and (E) Enrichment of cell identity (D) and disease genes (E) in genes in three groups, using the whole genome as the background. P-values were
calculated using the binomial test. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; n.s., not significant. (F) and (G) Enrichment of cell identity (F) and disease genes (G)
(y-axis) for the genes in (A), ranked by the network complexity (x-axis), measured by (i) network connectivity, as well as the overall enhancer activity, (ii)
network size as well as enhancer number, (iii) chromatin accessibility and (iv) SE ranks based on H3K27ac signals calculated by ROSE [6].

eNet is robust and broadly applicable
To investigate the broad applicability of eNet, we applied
it to various datasets in human or mouse tissues across
different single-cell platforms, including SHARE-seq mouse
skin dataset [31], SNARE-seq mouse cerebral cortex dataset
[34] and sci-ATAC-seq3 human fetal kidney and heart datasets
[50]. Similar to the above findings, we found cell identity and
disease genes tended to be regulated by complex enhancer

networks (Supplementary Figure S6A, C, E and G available online
at http://bib.oxfordjournals.org/). The network connectivity
showed the best performance in predicting cell identity genes and
disease genes (Figure 6A, C, E and G; Supplementary Figure S6B,
D, F and H available online at http://bib.oxfordjournals.org/). Hub
enhancers in Complex mode displayed the highest enrichment of
tissue-related GWAS SNPs (Figure 6B, D, F and H). These analyses
in various human or mouse tissues datasets (Figures 2 and 6;
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Figure 4. Comparison of enhancer networks based on single cell data and Hi-C data in GM12878 cell line. (A) Enrichment of Hi-C chromatin interactions
in three groups of enhancer pairs divided by chromatin coaccessibility:High (PEIs), Middle and Low, using the group Low as the background. P-values were
calculated using the binomial test. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; n.s., not significant. (B) The PEIs and Hi-C chromatin interactions in the CCR7 locus.
Y-axis indicated the chromatin coaccessibility of PEIs calculated by Cicero (top) or the fragments frequency of Hi-C chromatin interaction (bottom).
(C) CCR7 enhancer networks based on PEIs (top) or Hi-C chromatin interactions (bottom). (D) Venn diagram showing the overlap of genes regulated
by the Complex enhancer networks defined based on PEIs and Hi-C data, resulting in three groups: PEIs-with-HiC, PEIs-only and HiC-only. (E) and (F)
Enrichment of cell identity (E) and disease genes (F) in three groups, using the whole genome as the background. P-values were calculated using the
binomial test. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; n.s., not significant.

Supplementary Figure S6 available online at http://bib.oxfordjourn
als.org/) support the conclusion that eNet is robust and broadly
applicable in various biological systems and different single-cell
platforms.

Model of enhancer networks in gene regulation
Our analysis revealed three modes of enhancer networks in reg-
ulating gene expression according to their network complex-
ity: Complex, Multiple and Simple. We found that genes reg-
ulated by the Simple mode were primarily enriched in house-
keeping functions, such as RNA modification and DNA repair
(Figure 7A). In contrast, genes regulated by the Complex mode
were enriched in key genes related to cell fate commitment, such
as the regulation of leukocyte differentiation in human blood,
skin development in mouse skin and cerebellar cortex forma-
tion in mouse cerebral datasets [51]. In addition, Complex mode
preferentially regulated upstream regulators, such as transcrip-
tion factors [52] (Supplementary Figure S7A available online at
http://bib.oxfordjournals.org/).

Therefore, we proposed a model of enhancer networks con-
taining three modes according to their network complexity: Sim-
ple, Multiple and Complex (Figure 7B). By definition, in Simple
mode, gene regulation was controlled simply by one or a limited

number of enhancers; we speculated that it provided a quick
response to control a large number of regular genes, such as
housekeeping genes, at a low cost. Meanwhile, in Multiple mode,
gene regulation was controlled by multiple enhancers but limited
PEIs; this might increase the strength of regulation and redun-
dancy of gene expression at the cost of involving more enhancers.
Lastly, gene regulation was controlled by multiple enhancers and
frequent PEIs in Complex mode, perhaps the most robust to
random failures of individual enhancers (transcriptional noise
or genetic mutation), at the cost of connecting enhancers and
primarily controls key cell identity genes. Enhancer networks are
established gradually during lineage commitment and drive the
expression of cell identity genes, where network hub enhancers
play central roles to coordinate the network system.

Discussion
Enhancer networks have been reported in previous studies
through integrated analysis of cell type-specific epigenomic data
or CRISPR-based technique [53–57]. Here, we reported eNet to
build enhancer network based on the rich source of single-cell
multi-omics data and quantified its complexity by two metrics:
network size and network connectivity. The first metric, network
size (the number of enhancers) is equivalent or similar to the
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Figure 5. Dynamics of enhancer networks during B cell differentiation. (A) UMAP of B cell differentiation colored by cell-type annotation, the dash-line
indicates the pseudotime during B cell differentiation inferred based on scATAC-seq data. (B) Genome browser track of PAX5 putative enhancer cluster,
involving 24 enhancers, that are accessible at any of HSC, LMPP, CLP, pre-B and B cell types. (C) Violin plot showing PAX5 relative expression. (D) The
PAX5 enhancer networks in HSC, LMPP, CLP, pre-B and B cells, where the colored nodes represent accessible enhancers, while the empty nodes represent
closed enhancers. The edges represent PEIs.

sum of the individual constituent enhancers in previous studies,
such as multiple enhancers [7], domains of regulatory chromatin
(DORCs) [31], regulatory locus complexity [58] or SEs [6]. However,
the second metric, network connectivity (the frequency of PEIs),
measuring the potential enhancer interactions, differs from these
existing studies. Network connectivity had the best performance
in predicting cell identity and disease genes, where the network
hub enhancers are the most functionally important. Interestingly,
SEs with or without network structure displayed different network
connectivity between the constituent enhancers, irrespective
of their indistinguishable chromatin accessibility, which might
explain their diverse and heterogeneous mechanisms [13–16].
Taken together, to our knowledge, we for the first time propose
the concept of ‘complexity of enhancer network’ and establish
its functional links with cell identity or disease, which greatly
extended these previous findings in understanding the biological
relevance and implications of enhancer network.

The development of single-cell technologies generated a
large number of single cell multi-omics profiles in various
biological systems [35–38]. However, these studies have largely
focused on connecting distal enhancers with their target genes.
eNet allows us to explore how individual elements interact
with each other to control gene expression during lineage
commitment at single-cell resolution. Next, we discovered
a simple rule that the complexity of enhancer network is

effective in predicting cell identity genes, disease and phenotype-
associated genes, which outperforms the existing models such
as SE, enhancer cluster and gene expression variance (Figures 2
and 3, Supplementary Figures S1 and S6 available online at
http://bib.oxfordjournals.org/). We also mapped each enhancer to
multiple target genes and build enhancer networks, and observed
similar patterns (Supplementary Figure S1J and K available
online at http://bib.oxfordjournals.org/). Importantly, it is not
necessary to know the cell identity in advance from primary
samples or conduct challenging experimental steps, such as cell
subpopulation isolation and ChIP-seq. Thus, our method and
findings made it possible to re-visit and make full use of such
rapidly growing single cell multi-omics data.

This study had several limitations. First, eNet builds enhancer
networks based on the assumption that the Cicero-detected co-
accessible pairs [41], the PEIs in this study, are overall concordant
with proximity ligation-based chromatin interactions. However,
it is important to systematically compare the coherence of the
enhancer networks from scATAC-seq with those from proxim-
ity ligation-based chromatin interactions at higher resolution, if
available in the future. Second, in a parallel study, Shu et al. dis-
sected Atoh1 enhancer network revealed by eNet analysis through
CRISPR/Cas9-mediated perturbation and confirmed the central
role of network hub enhancers during spinal cord development
[59]. However, fully determining the functional regulatory roles of
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Figure 6. Enhancer networks in various human or mouse tissues across different single-cell platforms. (A), (C), (E), (G) Enrichment of cell identity genes
(y-axis) is plotted for top genes ranked by various scoring methods (x-axis) in different tissues and approaches. (A) mouse skin dataset (SHARE-seq)
[31], (C) mouse cerebral cortex dataset (SNARE-seq) [34], (E) human fetal kidney dataset (sci-ATAC-seq3) [50] and (G) human fetal heart dataset (sci-
ATAC-seq3) [50]. (B), (D), (F), (H) Enrichment of tissue-related diseases/traits SNPs curated in GWAS catalog in enhancers in Complex (hub and non-hub),
Multiple and Simple modes, using randomly selected genomic regions as the control. (B) mouse skin dataset, (D) mouse cerebral cortex dataset, (F)
human fetal kidney dataset and (H) human fetal heart dataset. P-values were calculated using the binomial test. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; n.s.,
not significant.
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Figure 7. Model of enhancer networks in gene regulation. (A) Functional enrichment of genes regulated by enhancer networks in Simple, Multiple and
Complex modes in human blood, mouse skin and mouse cerebral cortex datasets. (B) Three modes of enhancer networks. Simple mode, involving one
or very few enhancers, provides quick response to control a large number of regular genes, such as housekeeping genes, at low cost; Multiple mode,
involving multiple enhancers but limited PEIs, increases regulation strength as well as redundancy at the cost of the number of enhancers (nodes);
Complex mode, involving multiple enhancers and frequent PEIs, provides robustness of gene regulation for key genes, such as cell identity and disease
genes, at the cost of edges, where hub enhancers are functionally important.

enhancer networks in various biological systems requires more
comprehensive investigations in future.

Methods
Overview of eNet
eNet is an algorithm to build enhancer networks for clustered
enhancers controlling the same gene based on scATAC-seq and
scRNA-seq datasets. Briefly, it contains the following six steps.

Step 1. Preparing input matrix (input)
In this study, the processed single cell chromatin accessibility
and gene expression matrix data were downloaded directly from
public literatures and used as the input for eNet.

Step 2. Identifying the putative enhancer cluster (node)
We identified putative enhancer cluster by adapting the method
previously described [31, 40], with some modifications. Briefly,
given a gene, we first selected the enhancers located within a
±2∼100 kb window around each annotated transcriptional start
site as enhancer candidates. For each gene-enhancer pair, we then
calculated the Spearman correlation between enhancer chro-
matin accessibility and gene expression. The Spearman correla-
tions were z-score normalized using genome-wide gene-enhancer
pairs as the background. Lastly, the enhancers with a significant
z-score (P-value < 0.01, one-sided Student’s t-test), were defined
as a putative enhancer cluster regulating the specific target gene,
as the nodes in the network.

Step 3. Identifying the PEIs (edge)
The chromatin co-accessibility of enhancer pairs across various
cells was calculated using Cicero [41], a method that predicts cis-
regulatory DNA interactions from single-cell chromatin accessi-
bility data. By applying a threshold value of the co-accessibility
calculated, we determined the significant co-accessible enhancer
pairs, termed as the PEIs, as the edges of the network.

Step 4. Building enhancer networks (network)
We built a binary adjacency matrix to represent the PEIs for
each putative enhancer cluster. Thus, the adjacency matrix can
be visualized as an enhancer network, where nodes represent
enhancers and the edges represent PEIs.

Step 5. Calculating network complexity (network
complexity)
Network size was quantified by the quantity of nodes in the
network. Network connectivity was quantified by the average
degree [42], which was calculated as 2-fold of the number of edges
and divided by the number of nodes.

Step 6. Classification of enhancer networks (mode)
We built the enhancer network for each gene genome-wide by
repeating steps 1–5. Then, by applying a threshold value of net-
work size and connectivity, we can classify the enhancer networks
into several groups: Complex, Multiple, Simple and others.
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Defining network hub enhancers
In Complex mode, we calculated the node degree for each
enhancer and normalized them by the total number of edges
in network, termed as normalized node degree. By applying a
threshold value of the normalized node degree, we divided the
enhancers into two groups, termed as network hub enhancers
and non-hub enhancers, where network hub enhancers are those
with high frequency of PEIs.

Robustness analysis of eNet
Building weighted enhancer network in Step 4
In addition to the binary adjacency matrix in Step 4, we also
built the weighted co-accessibility enhancer networks and
evaluated the performance of the complexity of weighted
network connectivity in predicting cell identity and disease
genes. It resulted in not obvious difference between two methods
(Supplementary Figure S1G–I available online at http://bib.oxford
journals.org/).

Thresholds to classify enhancer networks in Step 6
To test the robustness of thresholds of network size and network
connectivity in defining Complex, Multiple and Simple mode, we
set different thresholds and calculated the enrichment of cell
identity and disease genes (Supplementary Figure S2 available
online at http://bib.oxfordjournals.org/).

Effect of network size or chromatin accessibility on network
connectivity
To decouple the effect of network size on network connectivity,
we ranked the enhancer networks based on the network size
and separated them into 5 groups from high to low, which
resulted in similar network size level within each group. Then,
we compared the network connectivity and cell identity/disease
genes enrichment of the Complex and Multiple networks
in each group (Supplementary Figure S3A–D available online
at http://bib.oxfordjournals.org/). Similar analyses were per-
formed to evaluate the Effect of network size or chromatin
accessibility (Supplementary Figure S4A–D available online at
http://bib.oxfordjournals.org/).

Retrieval of cell identity, disease and
phenotype-associated genes
The cell identity genes were retrieved from related previous stud-
ies and the website (https://www.biolegend.com/cell_markers)
[60]. The disease genes were from MalaCards (https://www.
malacards.org), OMIM (https://omim.org) and DisGeNET [44].
The phenotype-associated genes were from MGI (http://www.
informatics.jax.org/) [61,62]. All these cell identity and disease
genes are provided in Supplementary Table S3 available online at
http://bib.oxfordjournals.org/.

Enrichment analysis of cell identity and disease
genes
Briefly, given a gene group, the enrichment score was calculated
as the fold enrichment relative to the genome background. The
computing method was determined as

(m/n) / (M/N) ,

where m and M represent the number of cell identity genes
within the group and genome-wide, respectively, and n and N
represent the number of genes within the group and genome-
wide, respectively.

Performance evaluation in predicting cell identity
and disease genes
To evaluate the performance of enhancer networks in predicting
the cell identity and disease genes, we ranked all genes by various
scoring methods, including network connectivity, network size,
overall chromatin accessibility and gene expression variance. We
then calculated the fold-enrichment of cell identity or disease
genes in top-ranked genes with a moving window of 50, using the
whole genome as the background.

Enrichment analysis of GWAS SNPs
The GWAS Catalog SNPs [46] were downloaded through the
UCSC Table Browser (http://genome.ucsc.edu/). We curated a
list of cell-type-related GWAS SNPs using a semi-automatic
text mining method (Supplementary Table S5 available online
at http://bib.oxfordjournals.org/). The overlap between loci and
GWAS SNPs was performed using bedtools intersect [63]. For
enhancers in each group, the enrichment score was calculated
as the fold enrichment relative to the genome background. The
computing method was listed as following:

(m/n) / (M/N) ,

where m and M represent the number of SNPs within the group
and genome-wide, respectively, and n and N represent the number
of loci within the group and genome-wide, respectively. The
genome-wide background is generated from a list of loci obtained
by randomly shuffling the list of regular enhancers.

Sequence conservation score
phastCons 100-way vertebrate conservation scores were down-
loaded from the UCSC Genome Browser [45]. We calculated
the mean phastCons score for each enhancer as previously
described [36].

Comparison of PEIs and Hi-C chromatin
interactions
High-resolution Hi-C data in GM12878 cell were obtained from
the literature [19] and processed as previously described [25]. We
compared the enrichment of chromatin interactions detected by
Hi-C in enhancer pairs with different co-accessibility (Figure 4A).

Comparison of enhancer networks based on PEIs
and Hi-C chromatin interactions
We mapped Hi-C chromatin interactions to the enhancer clusters
defined by single cell GM12878 data to replace the PEIs by using
bedtools map, then built enhancer networks, evaluated the com-
plexity of enhancer networks and defined network hub enhancers
following the workflow in eNet analysis.

Cell-type-specific enhancer networks
To build cell-type-specific enhancer networks (Figure 5), we used
the enhancer accessibility and gene expression matrix from a
specific cell type as the input for eNet algorithm. The gene expres-
sion and chromatin accessibility of cell-type-specific enhancer
network were represented by their average across all cells per cell
type, followed by min-max normalization.

Blood-related SEs
The blood-related SEs were downloaded from the dbSUPER
database [47] and merged into an SE list using bedtools [63]
(Supplementary Table S4 available online at http://bib.oxfordjourn
als.org/).
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Key Points

• We develop eNet, a computational method to build
enhancer network based on scATAC-seq and scRNA-
seq data.

• Cell identity and disease genes tend to be regulated
by complex enhancer networks, where network hub
enhancers are functionally important.

• Enhancer network outperforms the existing models in
predicting cell identity and disease genes, such as super-
enhancer and enhancer cluster.

• We propose the concept of complexity of enhancer net-
works and establish its functional links with cell identity
or disease.
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