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Distinct cell types emerge from embryonic stem cells through
a precise and coordinated execution of gene expression pro-
grams during lineage commitment. This is established by the
action of lineage specific transcription factors along with chro-
matin complexes. Numerous studies have focused on epigenetic
factors that affect embryonic stem cells (ESC) self-renewal and
pluripotency. However, the contribution of chromatin to line-
age decisions at the exit from pluripotency has not been as
extensively studied. Using a pooled epigenetic shRNA screen
strategy, we identified chromatin-related factors critical for
differentiation toward mesodermal and endodermal lineages.
Here we reveal a critical role for the chromatin protein,
ARID4B. Arid4b-deficient mESCs are similar to WT mESCs in
the expression of pluripotency factors and their self-renewal.
However, ARID4B loss results in defects in up-regulation of the
meso/endodermal gene expression program. It was previously
shown that Arid4b resides in a complex with SIN3A and
HDACS 1 and 2. We identified a physical and functional inter-
action of ARID4B with HDAC1 rather than HDAC2, suggesting
functionally distinct Sin3a subcomplexes might regulate cell
fate decisions Finally, we observed that ARID4B deficiency leads
to increased H3K27me3 and a reduced H3K27Ac level in key de-
velopmental gene loci, whereas a subset of genomic regions gain
H3K27Ac marks. Our results demonstrate that epigenetic con-
trol through ARID4B plays a key role in the execution of line-
age-specific gene expression programs at pluripotency exit.

During early embryonic development, a series of differentia-
tion and cleavage events lead to the formation of distinct cell
types that later form the organism. The emergence of various
cell types is a complex process that requires a precisely timed
mechanism for successful development. Embryonic stem cells
(ESCs) provide an in vitromodel for studying early cell fate deci-
sions. ESCs self-renew limitlessly in vitro. Because they have the
capacity to form all cell types (pluripotency), they can be directed
to desired lineages under the guidance of specific cytokines.

Cell fate decisions are executed by changes in gene expres-
sion.Whereas the gene expression program of a particular line-
age is being established, unrelated programs are simultaneously
extinguished. The chromatin environment plays a critical role
in regulating the timing and the level of gene expression. The
ESC-specific gene expression program is stabilized by the inter-
actions of core pluripotency transcription factors and chro-
matin complexes (1–3). The plasticity of ESC differentiation
potential is reflected in an open chromatin structure. Progres-
sively during differentiation, ESCs undergo reorganization of
chromatin, architecture and genomic topology (4–9). Altera-
tions in the chromatin environment of ESCs, therefore, may
impact lineage commitment dynamics.
Studies have identified chromatin factors regulating the ESC

self-renewal and pluripotency (10–18). It is becoming increas-
ingly clear that the chromatin architecture and histone modifica-
tions at the ESC stage can affect cell fate specification and
differentiation kinetics at later stages (17, 19). However, a com-
prehensive study of the epigenetic regulators subsequent to the
loss of self-renewal and pluripotency has been lacking. Therefore,
we sought to determine the role of chromatin factors in an
unbiasedmanner duringmeso/endodermal lineage commitment.
To accomplish this goal, we havemonitored the expression of the
first lineage-specific master transcription factors to enable a
more precise look at the chromatin-related requirements at cell
fate decisions. Our approach departs from previous reports fo-
cusing on epigenetic effects on ESC characteristics (10, 12).

Results

Functional RNAi screen identifies candidate chromatin factors
required for endoderm and mesoderm commitment

We used a pooled shRNA library screen to identify epige-
netic factors that impact mouse embryonic stem cell differen-
tiation toward mesoderm and endoderm (Fig. 1a). The shRNA
library consisted of 5 previously validated shRNAs per gene tar-
geting ;300 chromatin-related proteins. A Brachyury-GFP;
Foxa2-hCD4 reporter mESC line was transduced at low multi-
plicity of infection with the pooled shRNA library, enabling sin-
gle shRNA knockdown per cell. After puromycin selection of
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transduced mESCs, the starting (day 0) population of shRNAs
was determined by DNA sequencing. Thereafter, the reporter
line was directed toward mesoderm or endoderm. On day 5 of
differentiation, shRNAs in the top 5% of differentiated cells (for
mesoderm: highest BRACHYURY expression, for endoderm:
highest BRACHYURY and FOXA2 expression, lowest SSEA1
expression) as well as the bottom 5% of undifferentiated cells
(lowest BRACHYURY and/or FOXA2 expression and highest
SSEA1 expression) were determined by cell sorting and DNA
sequencing. The analysis was performed by comparing the
enrichment of shRNAs in day 5 differentiated cells to day 5 undif-
ferentiated cells or day 0 starting population (Fig. 1, a and b). We
found that the loss of chromatin factors more frequently led to
the differentiated phenotype with variable strength (Fig. 1b).

However, this was to be expected for the screening design as the
differentiation efficiency of WT cells was ;70% as calculated by
BRACHYURY-positive cell population on day 5 (Fig. 1c). Con-
sistent with published data (20–26), depletion of several mem-
bers of PcG and TrX complexes affected mESC differentiation
(Fig. 1b). shRNAs that were depleted at least 2-fold in differenti-
ated cell pools versus undifferentiated cell pools were selected as
potential candidates and further validated by single shRNA
knockdown experiments (Fig. 1c). Observed differentiation
defects were similar for mesoderm and endoderm lineages (data
not shown). This observation suggests that under the conditions
of this screen the candidate chromatin factors might impact a
common mesendodermal cell population that gives rise to both
lineages.

Figure 1. ARID4B loss leads to meso/endodermal differentiation defects. a, design of the shRNA screen. b,waterfall plot of shRNAs ranked by log2 of the
enrichment score in differentiated over undifferentiated cells. Negative controls are in red (not visible since their enrichment score is close to zero) and positive
controls (PcG complex members) are in black. c, endoderm differentiation efficiency is plotted as % BRACHYURY-positive cells on day 5 of differentiation. Neg-
ative control: nontargeting shRNA. d, flow cytometry data for endoderm differentiation. Negative control; nontargeting shRNA. Bry-GFP, Foxa2-hCD4mESCs
were transduced with either nontargeting or Arid4b-targeting shRNAs. After differentiation toward endoderm, expression of BRACHYURY (GFP, x axis) and
FOXA2 (hCD4, y axis) were determined by flow cytometry. e–l, RT-qPCR of selected transcripts during endoderm differentiation time course in WT, arid4bD, or
arid4bD cells that re-express human ARID4B.
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ARID4B is essential for successful mESC differentiation toward
endoderm and mesoderm

The ARID family protein ARID4B was chosen for in-depth
study as its knockdown led to compromised mesoderm and
endoderm differentiation. ARID family proteins exhibit DNA-
binding activity with little or no sequence-specificity and dis-
play diverse functions in development and disease progression
(27, 28). Arid4b and related Arid4a proteins contain a Tudor
domain and a chromobarrel domain that recognizes methyl-
ated histones (29). In the adult tissues Arid4b expression is re-
stricted to testis and important for spermatogonial develop-
ment (30–32). Reactivation of expression has been reported in
cancer (33–37). Deficiency of ARID4A and ARID4B results in a
decrease in repressive chromatin modifications in the Prader-
Willi/Angelman imprinting cluster (38). In our experiments
knockdown of Arid4b with two independent shRNAs severely
compromised differentiation of reporter mESCs toward meso-
dermal or endodermal lineages (Fig. 1, c and d), and SSEA1
remained high (Fig. S1, a and b), even with a modest decrease
in theArid4b level (Fig. S1c).
ARID4B is reported to be a component of the Sin3a core-

pressor complex (39, 40). Through its several protein interac-
tion domains, SIN3A serves as a scaffold for histone deacety-
lases HDAC1/2 and several other proteins that regulate Hdac
function and activity (41). Although the Sin3a complex was
originally classified as a transcriptional repressor, more recent
evidence suggests a role in transcriptional activation (42–44).
In addition to Arid4b, knockdown of other members of the
Sin3a complex, including Phf12, Mbd4, and Phf21a, lead to
defects in commitment of mESCs to mesoderm and endoderm
(Fig. 1c, Fig. S1, a and b).
To validate shRNA knockdown findings, we deleted the

Arid4b gene in mESCs with CRISPR/Cas9 (Fig. S1d). Arid4b
deleted mESCs expressed Oct4 and Nanog at similar levels to
WT mESCs (Fig. 1, e and f, Fig. S1, e and f). Oct4 and Nanog
expression was suppressed with similar kinetics asWT cells dur-
ing endoderm or mesoderm commitment. Moreover, Arid4b-
deletedmESCs failed to express Brachyury, Foxa2, or Sox17 dur-
ing endoderm (Fig. 1, g–i) or mesoderm differentiation (Fig.
S1g). Upon extension of endoderm differentiation from 5 to 8
days, we observed markedly reduced expression of Brachyury
and Foxa2 in Arid4b-deleted cells (Fig. S1, h and i). Importantly,
expression of human ARID4B in Arid4b-deleted mESCs rescued
endoderm differentiation defect (Fig. 1, j–l, Fig. S1j). Due to this
differentiation defect, we refer to arid4bD cells that are exposed
to the same differentiation protocol as WT cells as “meso/endo-
derm directed” rather than “arid4bDmeso/endoderm cells.”

Hdac1 and Hdac2 exert different roles in lineage commitment

Given the reported presence of HDAC1 and HDAC2 (45) in
Arid4b/Sin3a corepressor complexes, we tested whether the
differentiation defect upon ARID4B loss is phenocopied by loss
of histone deacetylase activity. First, we used a Class I HDAC
inhibitor, Merck 60, which is selective toward HDAC1 and
HDAC2 with IC50 of 1 and 8 nM, respectively. Histone deacety-
lation has key functions in maintaining a balance between self-
renewal and differentiation (46–51). To prevent confounding

effects of Merck 60 treatment at the ESC stage, we limited its
use only to the differentiation phase. We assessed endoderm/
mesoderm differentiation efficiency upon inhibitor treatment
in the Brachyury-GFP; Foxa2-hCD4 reporter mESCs. Increas-
ing concentrations of Merck 60 treatment was associated with
elevated histone 3 acetylation (Fig. S2a). BRACHYURY and
FOXA2 expression was reduced uponMerck 60 treatment dur-
ing endoderm differentiation (Fig. S2b). However, SSEA1 levels
were unchanged in DMSO or Merck 60-treated cells. Similar
results were obtained for Merck 60 treatment during meso-
derm differentiation (Fig. S2c).
To resolve ambiguities from inhibitor treatment, we gener-

ated independent CRISPR/Cas9-mediated Hdac1 or Hdac2
deletions in mESCs (Fig. 2, a and b). Similar to Arid4b-deleted
cells, Hdac1-deleted mESCs fail to express Brachyury, Foxa2,
or Sox17 during endoderm differentiation, whereas Hdac2 de-
letion had no evident effect (Fig. 2, c–e). Mesoderm differentia-
tion was also defective in hdac1D cells (Fig. 2f). On the other
hand, Nanog suppression during differentiation followed with
similar kinetics inWT, hdac1D, and hdac2D cells (Fig. S2, d–f).
These results are consistent with a critical role of HDAC1, but
not HDAC2, in early embryogenesis (52, 53). In essence,
HDAC1 loss phenocopies aspects of ARID4B deficiency.
We next asked whether the loss of ARID4B or HDAC1

affected neuroectodermal lineage commitment. In contrast to
mesoderm or endoderm differentiation, the loss of ARID4B or
HDAC1 failed to affect commitment toward neuroectodermal
lineage, as evidenced by the expression of Sox1, Pax6, or Jag1
marker genes (Fig. 2, g and h, Fig. S2g). We conclude that the
function of ARID4B is essential for meso/endodermal commit-
ment and dispensible for neuroectodermal lineage.
Although both HDAC1 and HDAC2 are present in the Sin3a

complex, it is interesting that onlyHdac1 deletion phenocopies
Arid4b deletion. We tested whether this result might be due to
a preferential physical interaction between ARID4B and
HDAC1. We performed coimmunoprecipitation using Arid4b
antibody inWT and arid4bDmESC nuclear extracts (Fig. 2i). As
expected, ARID4B successfully immunoprecipitated SIN3A.
HDAC1 was coimmunoprecipitated with ARID4B in WT nu-
clear extracts. Of note, HDAC2 was not detected in the pulldown
withARID4B even though it is expressed in these cells.
We then performed glycerol gradient centrifugation to ana-

lyze intact complex composition. ARID4B and SIN3A peaks
coincided in high molecular weight fractions. We observed a
greater proportion of HDAC1 coincided in these same frac-
tions. Although there was some HDAC2 in these same frac-
tions, the proportion of HDAC2 was more pronounced in
lowermolecular weight fractions that lacked SIN3A (Fig. 2j).
Next, we performed proximity ligation assay (PLA) to detect

in situARID4B interaction with HDAC1 orHDAC2. This tech-
nique utilizes a pair of oligonucleotide-bound antibodies to
enable continuous DNA synthesis only if epitopes are in close
proximity (40 nm) and is used for intracellular visualization of
protein–protein interactions. Consistent with previous results,
we observed more ARID4B-HDAC1 interactions than
ARID4B-HDAC2 interactions in mESCs (Fig. 2k). Themajority
of interactions colocalizedwith 49,6-diamidino-2-phenylindole,
consistent of the subcellular localization and function of these
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proteins. A greater number of ARID4B-HDAC1 interactions
were not because of differences in abundance, because HDAC1
and HDAC2 were expressed at similar levels in mESCs (Fig.
S2h). These results suggest that the observed mesodermal and
endodermal differentiation defect of ARID4B deficiency is
associated with loss of HDAC1 activity in Sin3a complex.

arid4bD and hdac1D cells exhibit similar global histone
modification profile
Next, we investigated the global chromatin profile of endo-

derm committed WT, arid4bD, hdac1D, and hdac2D cells. To
this end, we performed a quantitative analysis of histone post-
translational modifications byMS, which allowed for an unbiased
examination of histonemodifications, as well as their combinato-

rial constitution in each cell type. The results were normalized to
WT and clustered using the Euclidean distance metric (Fig. 2l).
WT cells clustered closely with hdac2D cells. arid4bD cells clus-
tered away fromWT cells and were more similar to hdac1D cells
than hdac2D cells. These observations are consistent with the
similarities in phenotype of ARID4B andHDAC1 loss.
Given the differentiation defect of arid4bD cells, it is possible

that the arid4bD cells maintain an ESC stage histone modifica-
tion profile. To test this, we compared the global histone modi-
fication profile of WT ESCs to those of endoderm-differenti-
ated WT, arid4bD, hdac1D, and hdac2D cells. Interestingly,
WT ESCs clustered away from endoderm-differentiated cells,
regardless of the genotype (Fig. S2i). These observations sup-
port a model in which arid4bD cells do not remain as ESCs

Figure 2. ARID4B functionally and physically interacts with HDAC1. a, validation of Hdac1 knockout by Western blotting in WT and CRISPR-mediated
knockout cells during endoderm differentiation. b, validation of Hdac2 knockout byWestern blotting in WT and CRISPR-mediated knockout cells during endo-
derm differentiation. c–e, RT-qPCR of Brachyury (c), Foxa2 (d), and Sox17 (e) during endoderm differentiation time course in WT, hdac1D, and hdac2D cells. f,
RT-qPCR of Brachyury duringmesoderm differentiation time course inWT, hdac1D, and hdac2D cells. g and h, RT-qPCR of Sox1 (g) and Pax6 (h) during neuroec-
toderm differentiation time course in WT, hdac1D, hdac2D, and arid4bD cells. i, coimmunoprecipitation using ARID4B antibody. Nuclear extracts from WT or
arid4bD mESCs were used. j, cosedimentation assay using glycerol gradient centrifugation. k, PLA of ARID4B-HDAC1, ARID4B-HDAC2 in WT mESCs. Red dots
depict interactions between tested proteins. 49,6-Diamidino-2-phenylindole was used to stain the nuclei. A PLA reaction without the use of primary antibodies
was used as a negative control. l, proteomic analysis of histonemodifications in endoderm directedWT, arid4bD, hdac1D, and hdac2D cells.
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during differentiation but are unable to successfully execute
commitment to endoderm ormesoderm lineages.

arid4bD cells fail to up-regulate meso/endodermal gene
expression program

To further investigate the role of ARID4B in mESC lineage
commitment, we conducted RNA expression profiling ofWT or
arid4bD cells directed toward mesoderm or endoderm. Hier-
archical clustering of the samples showed that RNA-seq retained
high reproducibility in replicates (Fig. S3a). Compared withWT
cells, arid4bD cells showed a reduction in the expression of prim-
itive streak and endodermal markers (Fig. 3a). Comparative
analysis of transcriptomes revealed 171 genes were significantly
down-regulated (fold-change . 2, adjusted p value , 0.01) in
endoderm-directed arid4bD cells and 35 genes were up-regu-

lated. We validated the expression of a larger set of lineage spe-
cific genes (Fig. 3, b–j). Gene set enrichment analyses (GSEA)
demonstrated that the loss of ARID4B was associated with
reduced representation of pathways related to proper lineage
commitment and embryonic development (Fig. 3, k–m). Signal-
ing pathways activated in stem cell differentiation were down-
regulated in ari4bD cells (Fig. 3, n–o). On the other hand, type I
interferon pathway and cellular viral defense response pathways
were strongly activated in arid4bD cells (Fig. S3, b and c).

Chromatin landscape is altered upon Arid4b loss in lineage
commitment

To interrogate changes in the chromatin structure of differ-
entiating mESCs in arid4bD cells, we performed ChIP for
the histone marks H3K4me3, H3K27me3, and H3K27Ac. We

Figure 3. Global gene expression changes upon ARID4B loss. a, RNA-seq heat map of genes related to primitive streak formation in endoderm- andmeso-
derm-directed WT and arid4bD cells. b–f, RT-qPCR of Goosecoid (b), Cxcr4 (c), Eomes (d), Aplnr (e), and Gata4 (f) transcripts during endoderm differentiation
time course in WT, arid4bD, or arid4bD cells that re-express human ARID4B. g–j, RT-qPCR of Goosecoid (g),Mesp1 (h), Eomes (i), and Nodal (j) transcripts during
mesoderm differentiation time course in WT, arid4bD, or arid4bD cells that re-express human ARID4B. k, biological processes down-regulated in endoderm
directed arid4bD cells (Gene set enrichment analysis). l–o, gene set enrichment analysis (GSEA) plot of selected biological processes that are down-regulated
in endoderm-directed arid4bD cells.
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compared ChIP-seq intensities of these chromatin marks
between WT and arid4bD cells using a quantitative algorithm
called MAnorm (54). H3K27Ac signal was up-regulated in
arid4bD mesoderm- or endoderm-differentiated cells (Fig. 4a,
Fig. S4a). There was a small but notable change in H3K27me3
levels as well (Fig. 4b, Fig. S4b). In contrast, H3K4me3 peaks
were largely unchanged (Fig. 4c, Fig. S4c). Further analysis of
H3K27Ac signal revealed the increase to be in regions distal,
rather than proximal, to the transcription start site (TSS) (Fig.
4, d and e, Fig. S4, d and e).
Genes responsible for a specific biological process might be

coregulated through chromatin changes. Therefore, we used
Genomic Regions Enrichment of Annotations Tool (GREAT)
to identify biological processes enriched for each chromatin
mark (55). Consistent with previous results, genes that lose
H3K27Ac and H3K4me3 signal, and genes that gain H3K27me3

signal in mesoderm-directed arid4bD cells were strongly en-
riched in pathways related to embryonic development, pattern
specification, and differentiation (Fig. S4, f–h).
H3K27 acetylation is observed in active enhancers. Super-

enhancers (SE) are large clusters of enhancers that are marked
by broad H3K27Ac and high concentration of transcription
activators. They define cell identity by regulating the expression
of key cell fate genes (56–58). Given the essential role of
ARID4B in mesodermal and endodermal commitment, we
assessed whether H3K27Ac changes in arid4bD cells correlate
with any changes in SEs. We found that the number of SEs is
greater in arid4bD cells as compared with mesoderm-differen-
tiated WT cells (Fig. 4, f and g). There was a similar increase in
the number of SEs in endoderm-differentiated arid4bD cells
(Fig. 4, h and i). The changes in the number of SEs in arid4bD
cells might underlie the cell fate defects. Next we analyzed the

Figure 4. Global chromatin landscape changes that result from ARID4B loss. a–c, MA plot for H3K27Ac (a), H3K27Me3 (b), and H3K4Me3 (c) in meso-
derm-directed WT and arid4bD cells. Each point represents a genomic location for the signal. d and e, MA plot for H3K27Ac signal segregated based on dis-
tance to TSS (proximal, d; distal, e). f–i, H3K27Ac signal plots to identify super-enhancers for WT (f and h) and arid4bD (g and i) cells for mesoderm (f and g) and
endoderm (h and i) lineages, x axis shows the ranked H3K27Ac signal, y axis shows the enhancers. The inflection point cutoff value of H3K27Ac signal as well
as the number of identified super-enhancers are shown in each graph.
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genes and pathways enriched in SEs using the GREAT data-
base. We found that SEs unique to endoderm-differentiated
WTmESCs were enriched in morphogenetic and developmen-
tal processes as well as regulation of transcription (Fig. S4i). No
pathways were enriched in common SEs or arid4bD unique
enhancers. It should also be noted that many of the common
SEs exhibited increased H3K27Acmark in arid4bD cells. These
results indicate that developmental genes critical for endoderm
development might fail to acquire H3K27Ac mark in arid4bD
cells.
Next, we investigated a possible correlation between changes

in chromatin landscape and gene expression. Using SitePro
analysis, we found that the genes that are down-regulated in
mesoderm-directed arid4bD cells show increased H3K27me3
signal around their TSS. Interestingly, higher H3K4me3 modi-

fication around TSS accompanied the H3K27me3 mark in
these genes (Fig. 5, a–c). Genes that are down-regulated in
endoderm-directed arid4bD cells had higher H3K27me3 and
H3K4me3, and a pronounced decrease in H3K27Ac than WT
(Fig. S5, a–c). On the other hand, up-regulated genes exhibited
higher H3K4me3 and H3K27Ac mark around TSS in aridbD
cells (Fig. 5, d–f, Fig. S5, d–f). These results indicate that the
alterations in H3K27 rather than H3K4 are associated with
changes in the gene expression program observed in Arid4b
deficiency.
We compared the distribution and the intensity of chroma-

tin marks of WT and arid4bD cells using Integrative Genomics
Viewer (IGV). Genes required for the establishment of meso/
endodermal lineage (such as Bry (T), Eomes, Mixl1, Foxa2, Gsc,
Hoxa1, Hoxb1, Lhx1) were found to be generally marked with

Figure 5. Chromatin changes relevant to lineagemarkers in arid4bD cells. a–c, Sitepro analysis of H3K27Ac (a), H3K27Me3 (b), and H3K4Me3 (c) ChlP-seq
on transcriptionally down-regulated genes in mesoderm-directed WT (blue) and arid4bD (red) cells. x axis, average signal profile; y axis, relative distance from
the center (TSS). d–f, Sitepro analysis of H3K27Ac (d), H3K27Me3 (e), and H3K4Me3 (f) ChlP-seq on transcriptionally up-regulated genes in mesoderm-directed
WT (blue) and arid4bD (red) cells. x axis, average signal profile; y axis, relative distance from the center (TSS). g, Integrative Genomics Viewer visualization of
ChlP-seq tracks for selected lineage specific genes (Bry, Eomes,Mixl1, Fgf8, Foxa2, Gsc, Hoxa1, Hoxb1, and Lhx1) and ESC specific genes (Oct4 (Pou5f1),Nanog) in
mesoderm-directedWT and arid4bD cells. y axes of WT and arid4bD tracks are set to the same data range.
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higher H3K27me3 and lower H3K27Ac throughout the gene
loci in arid4bD cells (Fig. 5g, Fig. S5g). However, pluripotency
genes Oct4 (Pou5f1) and Nanog were more strongly marked
with H3K4me3 and H3K27Ac in arid4bD cells (Fig. 5g, Fig. S5g,
last two columns).

Discussion

Prior analysis of the role of the Sin3a complex in ESC biology
has led to apparently conflicting findings. Sin3a knockout
results in embryonic lethality around E3.5 and 6.5 (59, 60).
However, loss of the highly related SIN3B protein is lethal only
later during development (61). Although Arid4a knockout
mice are viable, Arid4b knockout mice die between E3.5 and
7.5 (38). Hdac1 knockout mice are similarly embryonic lethal,
whereas Hdac2 deletion is viable (52, 62, 63). Although both
HDAC1 and HDAC2 independently interact with SIN3A, it is
unclear whether these proteins function within the same com-
plex or are present in alternate Sin3a complexes (45). Taken to-
gether with the previous findings, our results point to a unique
role of a SIN3A, HDAC1, and ARID4B containing complex in
ESC biology and differentiation. We found that, similar to
Arid4b deletion, the deletion ofHdac1 but notHdac2, prevents
mesoderm and endoderm differentiation. Our findings support
previous reports on the role of HDAC1 in ESCs (50, 53, 64).
Moreover, we observe ARID4B interaction with SIN3A and
HDAC1, but not with HDAC2, despite considerable Hdac2
expression in these cells. Recently, an ESC-specific variant
Sin3a complex was identified, supporting the notion that the
composition of the Sin3a complex may vary among cell types
and during cell differentiation (65).
A genetic perturbation of a member of a protein complex

may lead to formation of residual complexes with different
functional outcomes, as recently described for SWI/SNF com-
plexes in cancer (66–68). Accordingly, the phenotype observed
in arid4bD ESCs might be because of the function of ARID4B-
less Sin3a complex rather than the complete loss of Sin3a com-
plex function.
In endoderm-directed arid4bD cells, transcripts for 41 genes

were up-regulated and 170 genes were down-regulated more
than 2-fold (adjusted p, 0.05). Similarly, for mesoderm differ-
entiation, transcripts for 39 genes were up-regulated and 308
genes were down-regulated in arid4bD cells. Although these
genes represent both direct and indirect targets of the Sin3a
complex, the observation that a majority of genes are down-
regulated upon ARID4B loss is consistent with a role of the
Sin3a complex in transcriptional activation. Indeed, evidence
from yeast, Drosophila, and mammals reveal that the histone
deacetylation by the Sin3a complex has a fine-tuning function
for transcribed genes (42–44, 59, 69–79).
Our ChIP-seq experiments revealed critical changes asso-

ciated with the loss of ARID4B during meso/endodermal dif-
ferentiation, exemplified by modification at H3K27. Down-
regulated genes, many of which have key developmental
roles, have H3K4me3 around their TSS in arid4bD cells, sug-
gesting ARID4B loss does not compromise MLL complex
function. However, high H3K27me3 modification accompa-
nies H3K4me3 and there is very little transcriptional output.

These results suggest that the loss of ARID4B function might
alter H3K27me3 deposition or removal in lineage-specific
genes upon differentiation and might prevent their transcrip-
tional up-regulation.
On the other hand, we observed elevated H3K27Ac mark

and SEs in a subset of genes unrelated to ESC differentiation.
SEs harbor a dense population of master regulators of cell fate
and the Mediator complex components along with many
chromatin factors (56–58). It is possible that the aberrant
H3K27Ac-high SE regions in arid4bD cells may compete for
and sequester away some of these factors required for the chro-
mation reorganization and transcription of ESC differentiation
genes.
Remodeling of the ESC cell cycle is coincident with exit

from pluripotency (80, 81). Even though there appears to be a
link between these two events, the notion that the change in
cell cycle is directly linked to differentiation has been chal-
lenged (82, 83). ARID4A has a unique LXCXE motif that
mediates interaction with pRB (27). ARID4A recruits the
Sin3a corepressor complex (and thus HDAC1) to pRB targets
for transcriptional suppression (84–86). This enables cell
cycle control through the G1 phase. Interestingly, ARID4B
lacks the LXCXE motif and is not predicted to interact with
pRB. We also did not detect changes in the number of cycling
ESCs or the distribution among cell cycle phases in arid4bD
ESCs (data not shown). It is conceivable that a change in the
composition of the Sin3a complex in arid4bD cells might
indirectly affect the cell cycle. Similar changes in chromatin
complex architecture and function are observed for chroma-
tin remodeling complexes (66, 87–91).
Our Arid4b knockdown and knockout experiments resulted

in protein deficiency at the ESC stage, whereas differentiation
defects were observed later. Even though arid4bD ESCs are
similar to WT ESCs on the basis of pluripotency marker
expression and cell cycle analyses, we cannot rule out the possi-
bility that the differentiation defect in arid4bD cells originates
already at the ESC stage. A more detailed analysis of the tran-
scriptomic changes observed in ESCs and throughout the dif-
ferentiation time course is needed to identify precisely when
and where ARID4B function is critical.

Experimental procedures

mESC culture and differentiation

For pooled shRNA screening, a previously established re-
porter mESC line was used (92) (shared by G. Keller).
mESCs were cultured in the mESC medium (Dulbecco’s

modified Eagle’s medium (Life Technologies) supplemented
with 15% fetal calf serum (Life Technologies), 0.1 mM b-mer-
captoethanol (Sigma), 2 mM L-glutamine (Life Technologies),
0.1 mM nonessential amino acid (Life Technologies), 1%
nucleoside mix (Sigma), 1,000 units/ml of recombinant leu-
kemia inhibitory factor (LIF, Chemicon), and 50 units/ml of
penicillin/streptomycin (Life Technologies)) on mouse-irra-
diated fibroblasts (CF-1, Thermo) and gelatinized tissue cul-
ture dishes.
Previously established protocols were adapted for mesoderm

and endoderm differentiation (92, 93). Briefly mESC plates

The role of ARID4B in mESC lineage commmitment

J. Biol. Chem. (2020) 295(51) 17738–17751 17745

https://doi.org/10.1074/jbc.RA120.015534
https://doi.org/10.1074/jbc.RA120.015534


(day 0 of differentiation) were trypsinized and fibroblasts were
removed from the mix by replating on gelatinized dishes for
30 min. ThemESCs were then plated on Petri dishes to support
suspension culture in differentiation base medium (75% Iso-
cove’s modified Dulbecco medium (Thermo), 25% F-12
(Thermo), 0.5% BSA (Sigma), 1% B27 without retinoic acid
(Thermo), 0.5% N2 (Thermo), 1% GlutaMAX (Thermo), 10 ml/
ml of zscorbic acid, 4.53 1024

M monothioglycerol) at 750,000
cells/10-cm Petri dish density. After 2 days, embryoid bodies
were collected and dissociated using Accutase (Sigma). Single
cells were replated at 500,000 cells/6-cm Petri dish for endo-
derm and 750,000 cells/6-cm Petri dish for mesoderm in differ-
entiation medium supplemented with cytokines (Activin A (75
ng/ml) for endoderm; Activin A (1 ng/ml), BMP4 (1 ng/ml),
andWnt3a (3 ng/ml) formesoderm).

Generation of CRISPR deletion mESCs

Paired single guide RNAs were designed to limit off-target
cleavage and delete critical coding exons of the selected candi-
date genes. mESC deletions were performed as previously
described for MEL cells (94, 95). mESC clones were screened
using conventional PCR and validated byWestern blotting.

Generation of Arid4b rescue mESCs

Full human ARID4B cDNA was purchased from Dharmacon
(clone number 40146449). HARID4B ORF was amplified with
AscI and XbaI restriction sites and cloned into pEF1a-FlagBio
plasmid (96). arid4bD mESCs were electroporated with 10 mg
of plasmid using a Bio-Rad electroporator. Clones were screened
withWestern blotting using anti-FLAG antibody.

shRNA screen and analysis

A list of epigenetic factors was prepared through literature,
chromatin-related domain homology search, and other data-
base searches. shRNA selection and library production was
done through the Broad Institute the RNAi Consortium.
Brachyury-GFP; Foxa2-hCD4 reporter mESCs were trans-

duced by centrifugation at 2000 rpm at 37 °C for 2 h in serum-
free mESC medium that contains 4 mg/ml of Polybrene. The
transduced cells were immediately washed and plated in con-
ventional mESC medium on a gelatinized tissue culture dish.
Transductions were performed at .200 cells/shRNA to allow
for adequate library representation. After 24 h, transduced cells
were selected using 1 mg/ml of puromycin for 3-4 days. mESCs
were allowed to recover for 2 days. Mesoderm and endoderm
differentiations were performed as explained above. Day 0
mESC sample was taken as the starting shRNA population. At
day 5 of differentiation, the top 5% of differentiated cells (for
mesoderm: highest BRACHYURY expression, for endoderm:
highest BRACHYURY and FOXA2 expression) as well as bot-
tom 5% of undifferentiated cells (lowest BRACHYURY and/or
FOXA2 expression and highest SSEA1 expression) were sorted
on BD Aria (DFCI Flow Cytometry Core Facility). Library
transductions were performed in three independent replicates.
Genomic DNA was isolated from sorted cells and was sent to
the Broad Institute for sequencing.

The analysis of the shRNA screen results were done using
the average of the shRNAs for each gene as well as the
Weighted Sum method on the GENE-E program developed by
the Broad Institute. Day 5 shRNA representation was com-
pared with day 0 mESC shRNA representation. Additionally,
day 5 differentiated to undifferentiated comparison was also
performed. The genes with less than three scored shRNAs were
eliminated from analyses. Genes that are depleted at least 2-
fold compared with the day 0 or day 5 undifferentiated popula-
tion were selected as candidates. Of these candidate genes, the
ones that show up in only one of the three biological replicates
were eliminated. Known Polycomb and Trithorax group pro-
teins were also discarded from further study. The final list of
candidate genes were tested one by one with three independent
shRNAs in mESCs for differentiation toward mesoderm and
endoderm.

Flow cytometry

mESCs or differentiated cells were dissociated into single
cells and stained with anti-SSEA1-Alexa Fluor 647 (eBio-
science, 51-8213) and anti-human CD4-PE (eBioscience, 12-
0049). Flow cytometry was performed on BD Fortessa and ana-
lyzed on FlowJo software. Cell sorting was done in DFCI Flow
Cytometry Core Facility on BD FACSAria cell sorters.

RT-qPCR and RNA-seq

Cells were collected and resuspended in TRIzol (Thermo,
15596018). RNA was extracted using Qiagen RNeasy plus kits
according to provided protocols. The concentration of puri-
fied RNA samples was tested on Nanodrop. Equal amounts of
total RNA (250 ng to 1 mg) was converted into cDNA using
an iScript cDNA synthesis kit (Bio-Rad, 1708890). qPCR was
performed with primers listed in Table 1 and iQ SYBR Green
supermix (Bio-Rad) using Bio-Rad CFX96 and CFX384
machines according to the manufacturer’s protocols.
For RNA-seq, genomic DNA was eliminated in a column

during RNA extraction using DNase (Qiagen, 79254). The
quality of the RNA samples was tested on an Agilent BioAna-
lyzer (DFCI CCCB Core Facility). Libraries were prepared
using New England Biolabs reagents (NEBnext ultra direc-
tional RNA library prep kit (E7420S), NEBnext rRNA depletion
kit (E6310S), andNEBnextmultiplex oligos for Illumina sequenc-
ing (E7335S)). The concentrations of library cDNA samples were
analyzed using Qubit. Sequencing was performed using Illumina
HiSeq2000.

Western blotting

WT and arid4bD were grown and lysed directly in 23
Laemmli buffer (Bio-Rad) including b-mercaptoethanol at
95 °C for 10 min. After centrifugation to remove cell debris,
equal amounts of cell lysate were loaded on 12% polyacrylamide
gel. Primary antibodies (Hdac1 (06-720; Millipore), Hdac2 (sc-
7899; Santa Cruz), Arid4b (A302-233A; Bethyl),a-H3Ac (06-599;
Millipore), actin (Mab1501; Millipore)) and horseradish peroxi-
dase-conjugated secondary antibodies were used for detection
(Table 2).
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Co-immunoprecipitation

Nuclear extracts were prepared fromWT (CJ9) and arid4bD
mESCs using the Universal Magnetic CoIP Kit (Active Motif,
catalog number 54002) according to themanufacturer’s protocol.
For co-immunoprecipitation, kit protocol was followed. 400 mg
of nuclear extract was incubated with 5 mg of anti-Arid4b (A302-
233A; Bethyl) antibody. After immunoprecipitation and washes,
beads were boiled in 23 Laemmli buffer (Bio-Rad) supplemented
withb-mercaptoethanol at 95 °C for 10min.

Glycerol sedimentation assay

WT (CJ9) mESCs were grown and glycerol sedimentation
assay was performed as previously described (67).

Proximity ligation assay

PLA was performed using DuoLink In Situ Red Starter Kit
(Sigma, DUO92101) using Arid4b (rabbit, 1:250) and Hdac1
(mouse, 1:250) or Hdac2 (mouse, 1:250) primary antibodies on
WT (CJ9) mESCs according to the manufacturer’s protocol.
Confocal microscopy (Leica TCS SP8) imaging was performed
at Bilkent University UNAMLaboratories.

Histone proteomics

Quantitative analysis of histone post-translational modifica-
tions was performed in collaboration with Dr. Jacob Jaffe of the
Broad Institute Proteomics Platform. WT, arid4bD, hdac1D,
and hdac2D mESCs as well as endoderm-directed cells were
collected and processed to isolate histones. The procedure was
completed as described in Ref. 97. The enrichment results for
each modification in knockout cells were normalized to the
WT counterpart and visualized using Morpheus tool of the
Broad Institute.

ChIP sequencing

ChIP was performed as previously described (96) using
the following antibodies: H3K27ac (Active Motif, 39133),
H3K27me3 (Active Motif, 39155), and H3K4me3 (Millipore,
07-473). ChIP-seq libraries were prepared using the NEBnext
ChIP-seq library kit (E6240S) and NEBnext multiplex oligos for
Illumina sequencing (E7335S) according to the manufacturer’s
protocol. The concentrations of library cDNA samples were
analyzed using Qubit. Sequencing was performed using Illu-
mina HiSeq2000.

RNA-seq data analysis

RNA-seq reads were aligned to the reference mouse genome
mm10 using STAR (98) with default parameters. Aligned reads
were counted in the genomic transcripts annotations from
GenomicFeatures (99), using Rsamtools (Morgan M, 2016).
DESeq2 (100) used for differentially expressed gene analysis
was performed with the threshold at an adjusted p value 0.01
and fold-change 2.

ChIP-seq data analysis

ChIP-seq reads were aligned to the mm10 reference genome
using Bowtie2 (101) with default parameters. Duplicate reads
were removed using PICARD tools (RRID:SCR_006525).

Table 1
Primer sequences used in this study

Primer name Sequence (59! 39)

B-actin-F-qPCR ATGAAGATCCTGACCGAGCG
B-actin-R-qPCR TACTTGCGCTCAGGAGGAGC
Oct4-F-qPCR CTGAGGGCCAGGCAGGAGCACGAG
Oct4-R-qPCR CTGTAGGGAGGGCTTCGGGCACTT
Nanog-F-qPCR ATGAAGTGCAAGCGGTGGCAGAAA
Nanog-R-qPCR CCTGGTGGAGTCACAGAGTAGTTC
Bry-F-qPCR CATGTACTCTTTCTTGCTGG
Bry-R-qPCR GGTCTCGGGAAAGCAGTGGC
Foxa2-F-qPCR TGGTCACTGGGGACAAGGGAA
Foxa2-R-qPCR GCAACAACAGCAATAGAGAAC
Sox17-F-qPCR GCCAAAGACGAACGCAAGCGGT
Sox17-R-qPCR TCATGCGCTTCACCTGCTTG
Pax6-F-qPCR AGTGAATGGGCGGAGTTATG
Pax6-F-qPCR ACTTGGACGGAAACTGACAC
Gsc-F-qPCR ACCATCTTCACCGATGAGCAGC
Gsc-R-qPCR CTTGGCTCGGCGGTTCTTAAAC
Cxcr4-F-qPCR GGCTGTAGAGCGAGTGTTGC
Cxcr4-R-qPCR GTAGAGGTTGACAGTGTAGAT
Eomes-F-qPCR TGTTTTCGTGGAAGTGGTTCTGGC
Eomes-R-qPCR AGGTCTGAGTCTTGGAAGGTTCATTC
Aplnr-F-qPCR GGTTACAACTACTATGGGGCTGA
Aplnr-R-qPCR AGCTGAGCGTCTCTTTTCGC
Gata4-F-qPCR CATCAAATCGCAGCCT
Gata4-R-qPCR AAGCAAGCTAGAGTCCT
Mesp1-F-qPCR AATGCAACGGATGATTGT
Mesp1-R-qPCR AGCGTGTACCCTATTGG
NodaL-F-qPCR CCAGACAGAAGCCAACT
NodaL-R-qPCR AAGCATGCTCAGTGGCT
Jagged1-F-qPCR CCAGCCAGTGAAGACCAAGT
Jagged1-R-qPCR TCAGCAGAGGAACCAGGAAA
Hdac1-F-qPCR AAGGAGGAGAAGCCAGAAGC
Hdac1-R-qPCR TCTGAGAAGTGAGGAACTTGGG
Hdac2-F-qPCR ATGCAGAGATTTAACGTCGGAG
Hdac2-R-qPCR TGCTTCTGACTTCTTGGCATG

Table 2
Antibodies used in this study

Antibody Company
Catalog
number Experiment used

Hdac1 Millipore 06-720 Western blotting
Hdac1 Santa Cruz sc-81598 Proximity ligation assay
Hdac2 Santa Cruz sc-7899 Western blotting
Hdac2 Santa Cruz sc-9959 Proximity ligation assay
Sin3a Active Motif 39865 Western blotting
Arid4b Bethyl A302-233A Immunoprecipitation,

Western blotting,
proximity ligation assay

Histone H3K27ac Active Motif 39133 ChIP
Histone H3K27me3 Active Motif 39155 ChIP
Histone H3K4me3 Millipore 07-473 ChIP
a-H3Ac Millipore 06-599 Western blotting
SSEA-1 eFluor660 eBioscience 50-8813 Flow Cytometry
CD4-PE eBioscience 12-0049 Flow Cytometry
b-Actin Millipore Mab1501 Western blotting

Table 3
Summary of RNA-seq data (GSE153633) generated in this study

Sample Raw reads Aligned reads Accession

RNA_endo_Arid4b_rep1 48,861,669 33,558,672 GSM4648443
RNA_endo_Arid4b_rep2 92,513,368 63,011,764 GSM4648444
RNA_endo_Arid4b_rep3 56,781,086 39,324,816 GSM4648445
RNA_endo_wt_rep1 45,504,785 31,133,800 GSM4648440
RNA_endo_wt_rep2 74,616,171 50,206,366 GSM4648441
RNA_endo_wt_rep3 34,571,724 23,814,171 GSM4648442
RNA_meso_Arid4b_rep1 60,249,575 41,640,361 GSM4648449
RNA_meso_Arid4b_rep2 61,808,239 41,860,535 GSM4648450
RNA_meso_Arid4b_rep3 48,766,906 33,823,527 GSM4648451
RNA_meso_wt_rep1 56,017,656 38,469,918 GSM4648446
RNA_meso_wt_rep2 25,745,470 17,614,638 GSM4648447
RNA_meso_wt_rep3 67,948,168 45,998,987 GSM4648448
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MACS2 (102) was used for ChIP-seq peaks calling MACS2
with the following parameters (–nomodel –keep-dup 1 –ext-
size = 146 -q 0.01). Peaks were filtered using the consensus
excludable ENCODE blacklist (The ENCODE Project Consor-
tium, 2012). MAnorm (54) was used for determining differen-
tial ChIP-seq peaks between WT and KO as previously
described (103) with the threshold ofM-value 1 and FDR 0.01.

Data availability

Data have been deposited in the Gene Expression Omnibus
with accession numbers GSE153633) and GSE153634) (Tables
3 and 4).
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