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Abstract

Acute myeloid leukemia (AML) demonstrates significant cellular heterogeneity in both leukemic and immune cells, providing valuable
insights into clinical outcomes. Here, we constructed an AML single-cell transcriptome atlas and proposed sciNMF workflow to
systematically dissect underlying cellular heterogeneity. Notably, sciNMF identified 26 leukemic and immune cell states that linked to
clinical variables, mutations, and prognosis. By examining the co-existence patterns among these cell states, we highlighted a unique
AML cellular ecosystem (ACE) that signifies aberrant tumor milieu and poor survival, which is confirmed by public RNA-seq cohorts.
We further developed the ACE signature (ACEsig), comprising 12 genes, which accurately predicts AML prognosis, and outperforms
existing signatures. When applied to cytogenetically normal AML or intensively treated patients, the ACEsig continues to demonstrate
strong performance. Our results demonstrate that large-scale systematic characterization of cellular heterogeneity has the potential to
enhance our understanding of AML heterogeneity and contribute to more precise risk stratification strategy.
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Introduction
Acute myeloid leukemia (AML) is the most lethal form of leukemia
distinguished by an accumulation of immature cells from the
myeloid lineage in the bone marrow [1]. Currently, the diagnosis
and treatment of AML are predominantly guided by structural
genomic abnormalities and recurrent gene mutations, as outlined
in the European LeukemiaNet (ELN) classification [2, 3]. Despite
advances in risk stratification, patient prognosis remains dismal,
with 5-year overall survival (OS) rates of only ∼30% [4]. Frequent
relapse to treatment, such as intensive chemotherapy, transplant,
and targeted therapy, is held accountable for mortality. It remains
a high priority to bridge AML relapse to cellular heterogeneity.

Tumor cells are inherently heterogeneous, which consists of
multiple cell states arising from coordinated variability in gene
expression within a tumor (i.e. transcriptional heterogeneity). An
increasing number of studies have identified intrinsic properties
of AML cells, including stemness [5], senescence [6], and oxidative

metabolism [7], associated with prognosis and relapse. Notably,
extrinsic tumor microenvironment (TME) changes have also been
documented to confer resistance to chemotherapy in leukemic
cells [8]. Besides, diverse cell states of immune cell types were
observed in AML patients underwent chemotherapy, illustrating
the biological and clinical heterogeneity in this disease [9]. Thus,
therapy efficacy may be greatly improved by characterizing the
constantly evolving TME, which might unveil dysfunctional cell
states and potential therapeutic targets.

The advent of single-cell RNA-sequencing (scRNA-seq) has
dramatically improved our ability to understand the cell states
of both leukemic and immune cells in AML [10]. For example,
scRNA-seq studies have identified six leukemic cell types rele-
vant to AML progression and drug response [11, 12] and have
uncovered distinct T cell subsets exhibit different levels of respon-
siveness to immunotherapy [13–15]. While these studies offered
valuable insights, their reliance on moderate sample sizes may
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increase the risk of missing rare cell states and over interpreting
patient-specific heterogeneity [16]. Another limitation lies in the
fact that previous studies examined leukemia and immune cells
separately, without establishing an organized cellular ecosystem
among them.

Here, we proposed a computational workflow, single-cell
integration by non-negative matrix factorization (sciNMF), to
measure cell states of leukemic and immune cells at high
resolution and scale. By analyzing 256,352 cells from 68 AML
patients across six scRNA-seq datasets, we unveiled an adverse
AML cellular ecosystem (ACE) characterized by co-organization
of both leukemic and immune cell states. Further, a prognostic
model based on ACE features was established, which improves
current ELN classification by further dividing cytogenetically
normal AML (CN-AML) patients into high- and low-risk groups.

Methods
Sample acquisition, preparation, and patient
consent
The four bone marrow samples were collected from four diag-
nosed AML patients from Fujian Institute of Hematology, Fujian
Provincial Key Laboratory on Hematology, Fujian Medical Univer-
sity Union Hospital, and all patients provided written informed
consent.

Bone marrow samples from AML patients were 1:1 mixed with
cold D-PBS, then loaded to Ficoll-Pague PLUS (cytiva, 17144002)
and centrifuged at 400 × g for 30 min. The BMMCs in the middle
layer were transferred out and washed twice with cold D-PBS.

Preparation and single-cell RNA-sequencing
library
Single-cell suspensions were filtered using 40 μm cell strainers.
The whole process of cell preparation before loading onto the
10x Chromium controller was <2 hours. Trypan blue (0.2%) stain-
ing was used for the evaluation of cell numbers and viability
under a microscope. Samples with cell viabilities >90% were
used for sequencing. Libraries were constructed using the Single
Cell 3′ Library Kit V2 (10x Genomics, Pleasanton, CA, USA). Once
prepared, indexed cDNA libraries were sequenced with paired-
end reads using an Illumina NovaSeq 6000 (Illumina, San Diego,
CA, USA).

Data curation
Full details of each dataset used, including library, sample type,
source, and data link are available in Supplementary Tables S1
and S2.

scRNA-seq datasets
We compiled and curated AML single-cell transcriptome atlas
from both our newly generated dataset and five published
datasets. All scRNA-seq datasets were pre-processed using the
Seurat R package (version 4.1.0) [17–19]. Upon the conditions of
original study, we excluded cells with a low number of detected
genes (ngenes < 500) and low number of total counts (ncounts < 1000)
to ensure high-quality.

Bulk gene expression datasets
AML bulk gene expression datasets with available survival data
and/or other clinical information were included in this study. The
normalized expression data were downloaded.

Terms glossary
To clarify the distinction between the terms used throughout the
context of our study, we defined each term bellow:

“Cell type” refers to the classification of cells based on their
molecular features or lineage, such as immune cell types or
leukemic cells.

“Cell state” describes the heterogeneous cells that execute a
specific biological process within a given cell type.

“Program” is decomposed from NMF algorithm, often involving
coordinated gene expression changes.

Meta-program is the cluster of programs with similar gene
composition.

“Cell state signature” refers to top 50 genes in the correspond-
ing meta-program, according to NMF score, indicating specific
biological process or state.

sciNMF workflow
We developed sciNMF R package (https://github.com/xmuhuan

glab/sciNMF) for systematically dissecting cell states that
occurred across samples/datasets, with the benefit to reduce
batch effects while preserve biological signals. The workflow of
sciNMF contains the following steps: (i) normalization of input
data and implementation of non-negative matrix factor (NMF);
(ii) program quality control, which removes low-quality or noise
programs; (iii) program clustering, which generates robust meta-
programs within and across samples/datasets.

(i) Implementation of non-negative matrix
factorization
To capture cellular heterogeneity, we employed NMF on each of
the 68 AML samples from six datasets. Input expression matrix
of each tumor was normalized using function SCTransform from
Seurat. Negative values in the Person residuals, stored in the
“scale.data” slot, were set to zero. NMF was performed individually
on leukemic cells from each sample with a range of ranks (K)
from 3 to 8 using a more efficient NNLM package (https://github.
com/linxihui/NNLM), resulting in 33 programs per sample. Each
program was summarized by the top 50 genes based on NMF
coefficients, yielding a total of 2244 programs.

(ii) Program quality control and identification of
robust programs
We introduced two statistical measures to remove low-quality
programs: (i) median and (ii) interquartile range (IQR) of intra-
rank normalized NMF usage. Specifically, normalization is per-
formed on programs which were generated by the same NMF
rank from same sample. Then, we calculated median and IQR
of normalized NMF usage for each program. Lower median value
indicates lower representativeness, outlying programs. IQR value
describes the dispersion of program usage, higher IQR value sug-
gests a program is activated in some cells while depressed in
others. We assume that a meaningful program should satisfy two
characteristics, that is, having sufficient representativeness (high
median) and a wide distribution (high IQR). Therefore, using these
two measures can eliminate potential low-quality programs.

After quality-control, we set to identify robust programs that
occurred across different K and samples as previously described
three criteria [20]. First, a program must overlap at least 70% (35 of
50 top genes) with program from different K in the same sample.
Second, a program must exhibit a minimum overlap of 20% (10
of 50 top genes) with programs from other samples. Third, the
selected programs must exhibit an overlap of ≤ 20% (10 of 50 top
genes) with any other programs in the same sample.
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(iii) Identification of meta-programs and gene
signatures
The resulted robust NMF programs were subjected to hierarchical
clustering using the ward.D2 method based on the number of
shared genes. The optimal number of clusters (signatures) was
mainly determined by silhouette value changes [21]. A list of 50
marker genes were then established to constitute these signa-
tures (i.e. cell states) as previously defined [22]. Briefly, robust
NMF programs were split into clusters based on the hierarchical
clustering analysis. For each cluster, we calculated the average
NMF coefficients for each gene, and selected the top 50 genes with
highest coefficient to construct the meta-program.

Pathway enrichment analysis of cell state
signatures
The signature genes were categorized according to the functional
gene sets in the pathway using the clusterProfiler R package (ver-
sion 4.0.5) [23]. Pathways (including hallmark, ontology, and cell
type signature gene sets) were downloaded from the Molecular
Signature Database (MSigDB, https://www.gsea-msigdb.org/gsea/
msigdb) [24].

Assignment of cell state signature for individual
cell
To evaluate the degree to which individual cell expresses a certain
signature, signature scores were calculated for each cell within
each major cell type using the “AddModuleScore” function in
Seurat. Subsequently, each cell was assigned to the relevant cell
state with the highest signature score.

Quantification of cell state abundance in bulk
expression datasets
To evaluate cell state abundance in bulk RNA-seq and microarray
profiles, we applied the GSVA R package (version 1.46.0) [25] to cal-
culate single-sample GSEA (ssGSEA) score of cell state signature
for each tumor. We also characterized the ssGSEA score of AML
hierarchical cell type signatures [12].

Associations between cell state and survival or
clinical variables
We also evaluated the associations between ssGSEA scores of
cell state and hierarchical cell type signatures with survival,
categorical, and continuous clinical variables in bulk expression
datasets. For survival data, we used univariate Cox proportional
hazards regression was used to link the ssGSEA scores of each
cell state (or hierarchical cell type signature) to patients’ OS. For
Figs 3b and 4b, the resulting z-scores were integrated across AML
bulk expression datasets using Liptak’s method [26] with weights
set to the inverse of the square root of number of samples in
each dataset. For categorical and continuous variables, we used
logistic regression model and general linear model, respectively.
For clarity, the resulting z (or t)-statistics were converted to signed
-log10 P values.

Co-existence patterns among AML cell states
To examine which cell states in the TME form cellular ecosystem,
we performed unsupervised hierarchical clustering to infer their
co-existence patterns. First, we retained 21 samples with >15 cells
for each major cell type, excluding plasma cells, dendritic cells
(DC), and immature hematopoietic cells. Second, quantified the
ratio of these 26 cell states relative to their own compartment
across all 21 samples. Unsupervised hierarchical clustering anal-
ysis was then performed on the cell state abundance matrix to

infer their co-existence patterns across these 21 samples using
the pheatmap R package (version 1.0.12). We further defined ACE
by examining the associations between leukemic_S9 and TME
cellular ecosystem.

We also applied Jaccard similarity index as an independent
approach to validate the co-existence patterns of each defined
TME cellular ecosystem as described in ref [27]. Briefly, it defines
two sets (cell states A and B) as the ratio of the size of their
intersection (samples had both subsets A and B > 0.5 in terms of
the cellular ratio) over the size of their union (all samples had
either cell state A or B > 0.5). The Jaccard index was computed
between a pair of cell states A and B for each TME cellular
ecosystem.

CellChat intercellular communication analysis
The CellChat R package (version 2.1.0) [28] was utilized to quanti-
tatively infer and analyze intercellular communication networks
using scRNA-seq data from Lasry et al. [14]. CellChat calculates
the communication probability of ligand-receptor pairs between
two cell types using a law of mass action model. The significance
of the communication probability is determined by evaluating
whether it is statistically higher between the known cell types
than between randomly permuted groups of cells.

Generation of gene expression prognostic model
based on acute myeloid leukemia cellular
ecosystem
To improve clinical applicability of the ACE and pinpoint genes
associated with poor survival, we performed following analysis.
We initially pooled the signature genes of cell state from ACE,
resulting in a comprehensive gene set (n = 197) representing the
invasive leukemic cell state and dispirited TME. Then, we con-
ducted 1000 iterations of leave-out-10% cross validation of a least
absolute shrinkage and selection operator (LASSO)-penalized pro-
portional hazards model with the cv.glmnet function of the glm-
net R package (version 4.1.8) [29], based on the 197 genes from
the microarray dataset (GSE37642_GPL96). Genes selected in 900
or more out of 1000 iterations were candidates to build the ACE
model (Supplementary Table S8). To estimate the dependencies
among variables, we trained ACE model by using stepwise Cox
regression analysis based on OS data and generated a 12-gene
signature, termed as ACEsig (https://github.com/xmuhuanglab/
sciNMF/tree/master/ACEsig).

The ACEsig risk score for each patient was estimated using
Equation 1, which calculates the expression values of selected
genes weighted by regression coefficients from stepwise Cox
regression analysis (Supplementary Table S9).

Risk score =
n∑

i=1

Expi ∗ βi (1)

where n is the number of ACEsig genes, Expi is the expression value
of the gene i, and β i is the estimated regression coefficient for the
corresponding gene i in the stepwise Cox regression analysis. We
separated patients into high-risk (ACEsigHi) and low-risk (ACE-
sigLo) groups based on their corresponding risk scores: >median
or ≤ median, respectively.

Validation of the AML cellular ecosystem
signature (ACEsig)
The prognostic value of the ACEsig was assessed in diagnostic
patients from 8 AML cohorts. The Kaplan–Meier (K–M) curve
and the log-rank test [30] was implemented to evaluate the sur-
vival between ACEsigHi and ACEsigLo groups for each cohort.
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Multivariate Cox proportional hazards regression was performed
to evaluate the independent prognostic value of the ACEsig after
adjusting for clinical factors including age, gender, and cytoge-
netic risk. To compare the prognostic accuracy of the ACEsig with
the existing prognostic models, we adopted concordance index
(C-index) [31], which ranges from 0.5 to 1.0, with 0.5 indicating
random prediction.

Comparison of the published prognostic models
We compared ACEsig with two deep learning models [32, 33]
and eight regression models [14, 34–40]. For regression models,
the feature genes and corresponding β coefficient values were
provided in Supplementary Table S10, the risk scores for each
signature were calculated by using Equation 1.

Results
Curated AML transcriptomic data resources and
computational workflow
To systematically decipher the heterogeneity of AML, we com-
piled scRNA-seq data from our newly generated dataset of four
diagnosed AML patients and additional five published datasets
to form a comprehensive AML single-cell transcriptome atlas,
which contains a total of 256 352 cells from 68 patients (Fig. 1a;
Supplementary Table S1). Additionally, we collected 2440 bulk
gene expression samples with clinical information to link AML
heterogeneity with clinical variables, drug resistance, and prog-
nosis (Fig. 1a; Supplementary Table S2).

The computational workflow of this study is displayed in
Fig. 1b. Currently, there is a lack of universal markers for effective
isolation of leukemic cells. We developed a deep learning classi-
fier, RFormer, to maximize the power to detect leukemic cells from
immune cells (Supplementary Methods; Supplementary Fig. S1).
The performance of RFormer, measured by the area under the
curve (AUC) and F1 score, ranks at top 1 in independent datasets
(Fig. 1c; Supplementary Fig. S1b; Supplementary Table S3). Then,
by applying RFormer on the curated datasets, we constructed
a uniformly annotated AML single-cell resource consisting of
164 340 leukemic cells and 92 012 immune cells for further
analyses (Fig. 1d and e). To effectively utilize these data resources,
we propose sciNMF, a computational workflow designed to
identify recurrent cell states across different samples (see
Methods; Supplementary Results; Supplementary Fig. S2). By
integrating samples from different datasets at the gene set
level, sciNMF effectively reduces technical differences while
preserving biologically relevant signals, enabling a more accurate
representation of leukemic cell states.

sciNMF identifies robust and comprehensive
leukemic cell states
Leveraging the extensive data resources and the efficient sciNMF,
our objective was to dissect the landscape of cell states and
cellular ecosystems in AML. We applied sciNMF to analyze
leukemic cell states in four small datasets and two large datasets
(Supplementary Fig. S3a and b). The number of cell states varies
across datasets, indicating that small or isolated datasets may
result in sub-optimal analyses. Next, we pooled samples from four
small datasets (n = 29), considering both sample size and source,
and re-executed sciNMF, resulting in 9 shared leukemic cell states
that encompassed those identified in each individual dataset
(Fig. 2a; Supplementary Fig. S3c; Supplementary Table S4). To
evaluate sample size adequacy for detecting cell state heterogene-
ity, we performed a downsampling analysis by randomly selecting

1 to 28 samples. We found that 15 or more samples were sufficient
to capture all leukemic cell states (Supplementary Fig. S3d). In
contrast, a single dataset, despite sample size is enough, has limi-
tations in defining cell state complexity (Supplementary Fig. S3c),
supporting that integration analysis could uncover more compre-
hensive cell states.

Next, we aimed to comprehend how gene signatures are assem-
bled at the level of individual cells. We scored each leukemic cell
based on the expression of each signature, then assign cells to
the highest scoring signature. For the representative sample (this
study: AML4), the 9 cell populations are respectively represented
by their gene signatures (Fig. 2b). We conducted dimensional-
ity reduction on the signature scores of all leukemic cells and
found these cells clustered by their most highly scoring signatures
(Fig. 2c and d; Supplementary Fig. S3e). Notably, this approach is
robust to technical differences across datasets, in contrast to the
clustering observed when dimensionality reduction is performed
directly on the expression data without integration (Fig. 2e and f;
Supplementary Fig. S3f).

To characterize the identified leukemic cell states, we per-
formed pathway analysis on the signature genes and intersected
them with publicly available gene signatures [41]. Pathway anal-
ysis showed that these leukemic cell states were associated with
diverse biological processes (Fig. 2g; Supplementary Table S5).
These include key processes previously identified in pan-cancer
analysis [20, 41, 42], such as proliferation and DNA replication
(e.g. TUBA1B, STMN1, and TOP2A) in leukemic_S1, RNA splicing
(e.g. LUC7L3, PNN, and DDX17) in leukemic_S2, epithelial-
mesenchymal transition (EMT) and coagulation (e.g. VIM, ANXA1,
and CRIP2) in leukemic_S7, and stress (e.g. FOS, JUN, and EGR1)
in leukemic_S8. In addition to the common signatures described
above, we identified four AML-specific signatures (leukemic_S2,
S4, S5, and S9) that show few overlaps with gene signatures
identified across various cancers (Fig. 2h). For instance, genes
associated with hematopoietic cell differentiation, such as GATA2,
FLT3, and RUNX1, were identified in Leukemic_S5. These genes
play pivotal roles in the tumorigenesis and progression of AML,
influencing both the survival outcomes and treatment strategies
for individuals [43]. Furthermore, leukemic_S9 not only consisted
of leukemic stem cell genes (e.g. SPINK2, CD34, TFPI, TNFRSF4,
and ANGPT1) [40] but also contained IL6-mediated signaling (e.g.
CD36, LTB, and DNTT) and leukocyte migration (e.g. CD74, JAML,
ALOX5, and CKLF) genes (Fig. 2f). Collectively, these analyses
demonstrate the performance of sciNMF in identifying leukemic
cell states at scales. The identified leukemic cell states encompass
those that might be overlooked in pan-cancer analyses, which
may reflect the AML-specific processes.

Leukemic cell states exhibit significant
associations with clinical variables, mutational
events, and survival
Having identified 9 leukemic cell states in AML, we wanted to
explore their association with clinical variables, and compare
with 6 leukemic cell type signatures from previous study [12].
Due to the lack of survival information in single-cell datasets, we
turned to bulk RNA-seq cohorts for our purpose. We re-analyzed
BeatAML2 [44] and TCGA-LAML [45] data, with complete clinical
information. We utilized single-sample gene set enrichment anal-
ysis (ssGSEA) [46] to calculate scores of both leukemic cell state
signatures and cell type signatures in these two AML cohorts, then
calculated the association between ssGSEA scores and clinical
variables. In the BeatAML2 cohort, clustering of these features
revealed branch 2 that contained two leukemic cell states (S2
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Figure 1. Overall workflow and deep learning cell type classifier. (a) Overview of the study design. We constructed a comprehensive AML single-cell
transcriptome atlas comprising 256 352 cells from our newly generated dataset and five published datasets, as well as 2521 bulk gene expression
samples from databases and literature. (b) Overview of the computational workflow. First, we trained RFormer to distinguish leukemic cells from
immune cells. Second, leukemic cells and each immune cell type were sequentially fed into sciNMF workflow, and output a series of gene signatures
representing diverse cell states. Third, co-existence of cell states identified a unique ACE. Finally, an ACE-based prognostic model (ACEsig) was developed
by using machine learning algorithm. (c) Comparative performance of RFormer (Supplementary Fig. S1a, this study) versus the existing classifiers in
distinguishing leukemic from immune cells based on AUC. Each dot represents a sample. The dashed line indicates a y-axis value of 0.9. (d) Bar plot
showing the number of leukemic and immune cells for each of 6 AML scRNA-seq datasets. Cells were classified to leukemic and immune cells by
RFormer. (e) Single-cell clustering of AML datasets colored using leukemic and immune cells (top) or cell type identity (bottom) determined by RFormer.
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Figure 2. Identification of robust leukemic cell states by integrating multiple datasets. (a) Leukemic cell states identified using our sciNMF R package.
Heat map showing pairwise number of shared genes among all robust NMF programs based on their top 50 genes. Programs are grouped into clusters
according to hierarchical clustering. The left bar indicates the nine leukemic cell states, and the right bar indicates the identity of samples. Gene
signatures are available in Supplementary Table S4. (b) Heat map of scaled expression levels of the 9 distinct cell state signatures defined in Fig. 2a in a
representative sample (this study: AML4). Rows correspond to genes in each signature and columns to cells, assigned by the highest scoring cell state.
(c and d) Signature score t-distributed stochastic neighbor embedding (t-SNE) of the 164,340 leukemic cells, colored by the highest scoring leukemic cell
states (c) and by leukemic_S9 signature scores (d). (e and f) t-SNE conducted on the signature scores (e) and PCA space (f), batch effects are mitigated
in our approach. (g) Heat map shows the selected pathways enriched in each cell state signature. (h) Overlap between 9 leukemic cell state signatures
and 41 pan-cancer signatures from recent study [20].
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and S5) along with the Progenitor-like cell type that associated
with increased blasts content and decreased monocyte content
(Fig. 3a). Conversely, the reverse holds for branch 4. Besides, cyto-
genetic adverse risk group showed enrichment for HSC-like cell
type and leukemic_S9 signatures (branch 3). Indeed, we identi-
fied a strong correlation between mortality and branch 3 across
all age groups (Fig. 3a). Similar findings were also observed in
the TCGA-LAML cohort (Supplementary Fig. S4a). Additionally,
survival analysis on additional four microarray datasets further
underscores the significant association of leukemic_S9 and HSC-
like cell type with shorter OS (Fig. 3b). It is noteworthy that
leukemic_S9 stands out as a more powerful prognostic indicator
than HSC-like cell type.

A recent study demonstrated remarkable perturbing effects of
different mutations on transcriptional signatures associated with
the lineage bias [47]. Inspired by this, we sought to ask whether
mutational events showed enrichment for leukemic cell state
signatures. By comparing the ssGSEA scores of leukemic cell state
signatures between groups dichotomized by mutation status,
we observed numerous significant correlations, including TP53
enriched for leukemic_S1, GATA2 enriched for leukemic_S2, PML-
RARA, a biomarker of French-American-British (FAB) M3 AML,
correlating with leukemic_S3, and numerous other associations.
Moreover, several mutations displayed strong correlations with
multiple leukemic cell states simultaneously, such as FLT3-ITD
(enriched for S2, S5, and S9), GATA2 (S2, S5, and S6), and RUNX1
(enriched for S5 and S9), suggesting that these AML tumors may
incorporate features from multiple leukemic cell states (Fig. 3c;
Supplementary Table S6).

Therapy resistance is a major obstacle in the treatment of AML
[48]. We next wondered whether leukemic cell states could reflect
response to chemotherapy. When applying leukemic signatures
to patients who received cytarabine- and anthracycline-based
induction treatment [49], we noted substantial increases in
ssGSEA scores for three leukemic cell states (S4, S7, S9) within
the non-complete remission (CR) group compared to the CR
group (Fig. 3d). Given the superior performance of leukemic_S9
in predicting prognosis, we further examined it in induction
failure patients from four datasets [50–53]. As anticipated,
leukemic_S9 consistently rose in relapsed samples across all
datasets, although statistical significance was achieved only
in one dataset which might be due to limited sample size
(Supplementary Fig. S4b). We subsequently asked whether
leukemic_S9 would inform the response to PD-1 blockade therapy
[15]. Remarkably, the proportion of leukemic_S9 cells exhibited
a significant decrease after PD-1 blockade treatment in the
complete and partial response (CRPR) group, whereas conversely,
they increased in the non-response (NR) group, albeit without
statistical significance (Supplementary Fig. S4c and d; Fig. 3e).
Together, these observations suggest that the identified leukemic
cell states hold substantial clinical and biological relevance,
including clinical variables, prognosis, mutations, and drug
response.

Immune cell states and leukemic_S9 collectively
constitute the acute myeloid leukemia cellular
ecosystem
Previous studies have predominantly focused on the cellular
diversity of leukemic cells [11, 12], without systematically dissect-
ing the heterogeneity and clinical relevance of immune cell states.
Here, by applying sciNMF to immune cells from six AML scRNA-
seq datasets, we identified 17 immune cell states from five major
immune compartments in AML (Supplementary Fig. S5a). As
observed for leukemic cells, the immune cells in the embedding

space clustered based on their most highly scoring signatures
(Fig. 4a).

Next, we examined immune cell state-specific survival
associations in external cohorts. Almost half (8 out of 17) of the
immune cell states were significantly prognostic in univariate
survival analysis, with consistent trends observed across cohorts
(Fig. 4b). To determine whether immune cell states form
cohesive ecosystems, we performed hierarchical clustering
on the cell state abundance matrix, using silhouette values
to identify co-existence patterns. This analysis revealed four
distinct TME clusters, suggesting potential cellular ecosystems,
with cluster 1 comprised half (4 out of 8) of the prognostic
immune cell states (Fig. 4c). Notably, their co-existences were
confirmed by using the Jaccard similarity index as an independent
method (Supplementary Fig. S5b). Strikingly, abovementioned
leukemic_S9 showed strong positive correlation with immune
cell states from cluster 1 compared to those from other clusters
(Fig. 4d; Supplementary Fig. S5c; Supplementary Table S7). We
therefore defined cluster 1 and leukemic_S9 collectively as the
ACE. Sorting patients by geometric average of states abundance
within ACE revealed that patients were well stratified in this
regard (Fig. 4e). We refer to patients with score above the
median as ACEhi, and conversely, as ACElo for those below
the median. Including samples from two RNA-seq cohorts
supported the overall pattern that ACE cell states co-existence
in a subset of AML patients (Supplementary Fig. S5d and e).
Importantly, ACEhi patients were associated with worse survival
in both cohorts, suggesting a prognostic value of ACE in AML
(Fig. 4f and g). Overall, these data indicate that the cellular
ecosystem comprising leukemic and immune cell states captures
the prognostic subgroups of AML.

Intercellular communication informs distinct
immune microenvironment between ACEhi and
ACElo groups
We next investigated the molecular basis that underlying the pro-
gression of the AML by examining the specific intercellular com-
munication of TME between ACEhi and ACElo patients (Fig. 5a).
Using scRNA-seq data from Lasry et al. [14], we detected exten-
sive and complex intercellular communications in AML by using
CellChat analysis (Supplementary Fig. S6a). Overall, we found that
the interaction number and strength were higher in the patients’
TME of ACEhi group than in that of ACElo group, although there
was no statistical difference (Supplementary Fig. S6b and c).
Notably, the interaction strength of some cell types exhibited
variations between two groups (Fig. 5b). Compared to ACElo group,
dendritic cells (DC) and CD4 cells increased their outgoing interac-
tion strength in ACEhi group, while B cells increased their incom-
ing interaction strength. More interestingly, tumor cells displayed
decreased outgoing interaction strength but increased incoming
interaction strength.

CellChat analysis detected 11 signaling pathways among the
seven major cell types, which were further categorized into
three kinds of signals, including shared (MIF, GALECTIN, CCL,
and BAFF), ACElo-specific (IFN-II, TNF, RESISTIN, and ANNEXIN),
and ACEhi-specific (VISFATIN, FLT3, and BAG; Fig. 5c). The
overall outgoing and incoming signaling patterns are presented
(Supplementary Fig. S6d and e). For shared signals, we showed
that two tumorigenic signals, MIF and GALECTIN, were activated
in almost all cell types, indicating their general roles in AML
progression (Supplementary Fig. S6f and g). Mechanistically,
ligand MIF interacts with its multi-subunit receptors CD74/CD44
and CD74/CXCR4 to enhance downstream MAPK pathways that
involved in tumorigenesis [54], and LGALS9 (also known as
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Figure 3. Clinical associations of leukemic cell states. (a) Heat map of the associations between the ssGSEA scores of both nine leukemic cell state
identified in this study and six leukemic cell type signatures defined in a recent study [12] with continuous and categorical clinical variables as well
as OS across and within age subsets (dataset: BeatAML2 [44]). The displayed association values were Z statistic for categorical (logistic regression)
and survival outcomes (Cox proportional hazards) and T statistic for the continuous outcomes (general linear model) derived from the corresponding
statistical test. (b) Left: Survival association of the nine leukemic cell states and six cell types in four microarray datasets. Right: survival associations
integrated across datasets. Survival associations are defined as -log10 p values oriented by survival direction. (c) Associations of mutational events and
leukemic cell state scores. Shown are the signed -log10 (student’s t-test p values) for the differences in cell state score with respect to mutational status.
The top five most significant mutational events are labeled. Full data are available in Supplementary Table S6. (d) Different leukemic cell state signature
scores were compared between the response groups (dataset: Herold2018 [49]). Data are represented as boxplots with the middle line indicating the
median, and the upper and lower hinges indicating the 25% and 75% quartiles, respectively. P values are calculated by two-sided student’s t-test. (e)
Changes in percentage of leukemic_S9 cells from pre to post PD-1 blockade in AML (dataset: Abbas2021 [15]). P values are calculated by two-sided paired
student’s t-test. CRPR, complete response and partial response. NR, no response.
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Figure 4. Immune cell states and leukemic_S9 together form AML cellular ecosystem. (a) Signature score t-SNE embedding of the major immune cell
types. Cells were classified by the highest scoring cell state. (b) Cell state-specific survival associations in bulk RNA-seq and microarray datasets, akin
to Fig. 3b. Leukemic and immune cell state labels are contrasted by gray and black text, respectively. (c) Co-existence analysis divided immune cell
states into four TME clusters. (d) The spearman correlations of abundances between leukemic_S9 and immune cell states were compared between TME
clusters identified in Fig. 4c. Data are represented as boxplots with the middle line indicating the median, and the upper and lower hinges indicating
the 25% and 75% quartiles, respectively. P values are calculated by student’s t-test. ∗ P < .05, ns, not significant. (e) Lineage-normalized ACE cell state
abundances among eligible samples from all six datasets (21 patients). (f and g) K–M curves of OS for ACEhi and ACElo patients in BeatAML2 (F) and
TCGA-LAML (G) datasets. P value was calculated by log-rank test.
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Figure 5. Different intercellular communication networks between ACElo and ACEhi groups. (a) Samples (bold font) from Lasry et al.’s scRNA-seq data
[14] were used for CellChat analysis. (b) Scatter plots illustrating the outgoing and incoming interaction strength of the 7 major cell types in ACElo and
ACEhi groups. (c) Bar graph showing the relative information flow in CellChat analysis of each signaling pathway in ACElo and ACEhi. Three kinds of
signals were distinguished by red (ACEhi-specific), black (shared), and blue (ACElo-specific) text, respectively. (d and e) Representative ligand-receptor
pairs involve in ACElo-specific signals. Shown are their communication probabilities (d) and expression levels (e) among major cell types. P values are
determined using permutation test. (f and g) Representative ligand-receptor pairs involve in ACEhi-specific signals. Shown are their communication
probabilities (f) and expression levels (g).

Galectin-9) mediates immunosuppression by suppressing STING
pathway [55]. We also identified two cytokine signals, CCL and
BAFF, which participate in recruiting cytotoxic cells to the site of
inflammation [56] and supporting the survival of mature B cells
[57], respectively (Supplementary Fig. S6h and i). Compared to
ACElo group, both CCL and BAFF signals were decreased in ACEhi
group, as evidenced by down-regulation of ligand or receptor gene
expression (Supplementary Fig. S6j), which may be related to a
weaker TME.

For ACElo-specific signals, TNF and IFN-II signals, com-
prised TNF-TNFRSFB1 and IFNG-IFNGR1/IFNGR2 pairs, were
sent by CD8 cells and received by monocyte, contributing to

inflammatory response in patients with low ACE abundance
(Supplementary Fig. S6d; Fig. 5d and e). The ANNEXIN signaling
was sent by diverse cell types and received by monocyte, while
RESISTIN signaling was mainly sent by monocyte and received
by multiple cell types, both signals were reported to involve
in inflammatory response [58, 59]. For ACEhi-specific signals,
in contrast, an inhibitory ligand-receptor pair BAG6-NCR3, who
serves as suppressing NK cell activation [60], was found to
act as major signaling from DC and tumor cells to NK cells
(Supplementary Fig. S6e; Fig. 5f and g). In addition, FLT3, a
common signaling to generate leukemic, and VISFATIN, which
could increase the malignancy of AML cells [61], were also
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detected. Collectively, these results demonstrate different TME
of ACE-informed AML subgroups, which would imply the distinct
clinical outcomes.

Identification and validation of the ACEsig
To evaluate the translational significance of ACE, we aimed to
develop a gene expression signature that could be practical. By
using LASSO algorithm and stepwise Cox regression analysis,
we constructed an ACE signature (ACEsig) consisting of 12 ACE
genes (Fig. 6a; Supplementary Tables S8 and S9). To examine the
association of the ACEsig with survival, we derived a risk score
by incorporating the Cox regression β coefficient value for each
gene and divided patients into high-risk (ACEsigHi) and low-risk
(ACEsigLo) groups based on median risk score. The ACEsigHi had
significantly worse OS compared to the ACEsigLo in the training
set (log-rank P < .0001; Supplementary Fig. S7a).

We then validated the ACEsig in four independent and well-
powered AML cohorts obtained from RNA-seq and microarray
technologies, including TCGA-LAML (n = 179) [45], BeatAML2
(n = 431) [44], GSE165656 [62], and GSE6891 (n = 495) [63, 64].
The ACEsig exhibited remarkable prognostic power in predict-
ing patients’ OS, and consistently, patients who were placed
in the ACEsigHi group survived significantly shorter than
those in the ACEsigLo group (log-rank P < .0001; Fig. 6b and c;
Supplementary Fig. S7b and c). The multivariate Cox regression
analyses revealed that its prognostic value was remained
after adjusting for age, sex, cytogenetic risk classifications,
intensive treatment, and transplant (P = .004 for TCGA-LAML,
P < .001 for BeatAML2, P < .001 for GSE165656, and P < .001
for GSE6891; Fig. 6d and e; Supplementary Fig. S7d and e). We
further evaluated its prognostic significance in additional five
AML cohorts, totaling 528 patients, consistently, the ACEsigHi
group had a worse prognosis compared to ACEsigLo in all the
validation cohorts (Supplementary Fig. S7f). When excluding
acute promyelocytic leukemia (FAB M3) patients, a subtype of
AML that can be definitively cured, our ACEsig retained its
prognostic value (Supplementary Fig. S7g). Notably, although
the ACEsig was developed using bone marrow samples, it also
performed well in peripheral blood samples (Supplementary
Fig. S7h).

To explore the added value of ACEsig, we compared its
performance against the signature scores of each cell state
within ACE in terms of their survival prediction accuracy using
concordance index (C-index) analyses [31]. The ACEsig achieved
the highest C-index performance in nearly all validation cohorts
(Supplementary Fig. S7i), highlighting its value in pooling cell
states with co-existence patterns. We also compared the ACEsig
against the existing prognostic models, including two deep
learning models [32, 33] and eight regression models [14, 34–
40]. Overall, the ACEsig showed consistently accurate prognostic
classification results, compared to the existing prognostic models
(Fig. 6f). Although some of the other models demonstrated
relatively high C-index within specific cohorts, particularly in
those where they were initially established, their accuracy did
not translate consistently across other cohorts. As an illustration,
the CODEG22 [38] exhibited commendable performance in
TCGA-LAML, where it was trained, and in the GSE10358 cohort
(Fig. 6f). However, its performance was more modest when
applied to the Leucegene cohort. Taken together, these results
suggest that the ACEsig provides a robust prognostic risk score
for AML patients, which outperforms the existing prognostic
models.

Application of the ACEsig in cytogenetically
normal and intensively treated AML
Examination of the relationships between the ACEsig risk
groups and the cytogenetic risk groups revealed that patients
with cytogenetic favorable- and adverse-risk were enriched in
the ACEsigHi and ACEsigLo groups, respectively (Fig. 6g and h;
Supplementary Fig. S7j and k). Notably, cytogenetic intermediate-
risk patients were evenly distributed within ACEsigHi and
ACEsigLo groups with significantly different OS (log-rank P < .05;
Fig. 6i and j; Supplementary Fig. S7l and m). This raises our
interests to check if the ACEsig could separate cytogenetically
normal AML (CN-AML) patients into prognostic subgroups, since
CN-AML accounts for nearly half of newly diagnosed AML cases
and is typically classified within the intermediate-risk group,
necessitating their re-stratification [65]. Surprisingly, the ACEsig
accurately stratified CN-AML patients into prognostically distinct
groups (Fig. 7a). It remained an independent prognostic factor in
multivariate Cox regression analyses for all cohorts (Fig. 7b and c;
Supplementary Fig. S8a and b).

Next, we sought to examine the relationship between the ACE-
sig groups and initial treatment for AML. We selected patients
who underwent intensive chemotherapy but did not receive a
transplant. The predicted ACEsigHi group was resistant to inten-
sive chemotherapy, exhibiting consistently worse survival than
the ACEsigLo group (Fig. 7d). Overall, these data suggest that the
ACEsig can not only reclassify patients with CN-AML, a seemingly
homogeneous group that actually consists of subgroups with
distinct clinical outcomes, but also predict response to intensive
chemotherapy.

Discussion
AML stands as the most lethal variant among leukemia, with the
tremendous heterogeneity of AML has been a subject of discus-
sion [66]. Previous efforts primarily concentrated on dissecting
either leukemic or immune cell states [5–8, 13–15], neglecting the
potential of their combination in revolutionizing AML diagnostics
and treatment. In this study, we undertook a thorough character-
ization of the intricate leukemic and TME landscapes, utilizing a
substantial, integrated scRNA-seq datasets of AML.

A key finding of this study is that the diversity in leukemic
cell states exceed those reported in recent works [11, 12], which
is benefit from our sciNMF workflow. We discovered a novel
signature, leukemic_S9, which not only exhibited strong corre-
lation with patient prognosis, outperforming the HSC-like cell
type signature, but also associated with the treatment response
to both chemotherapy and PD-1 blockade-based treatment. In
addition, these signatures were correlated with common muta-
tions in leukemogenic genes (e.g. RUNX1, GATA2, and FLT3-ITD)
based on BeatAML2 cohort, thereby extending the observations of
mutation-induced gene programs in preleukemic mouse models
to a larger scale [47].

Unsupervised clustering identified co-existence patterns
between leukemic and immune cell states, named ACE. Based
on single-cell intercellular communications analysis, our ACE
is likely to at least in part, signify aberrant TME that impedes
the host antitumor immune responses. Derived from the ACE
signature genes, the ACEsig proves predictive of AML patient
outcomes, surpassing the performance of existing prognostic
models. Among the 12 genes of the ACEsig, CALCRL, a G-protein-
coupled neuropeptide receptor, and HOPX, a transcription factor
involving in regulating differentiation, have both been associated
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Figure 6. Identification and validation of the ACEsig. (a) A schema that illustrates the workflow for generation of the ACEsig. (b and c) K–M curves of OS
and DFS for ACEsigHi and ACEsigLo groups in TCGA-LAML (b), and OS for BeatAML2 (c) cohorts. For each cohort, the sample size, the hazard ratio, and
the log-rank P value are labeled on the KM plot. (d and e) The multivariate Cox proportional hazard model analysis in TCGA-LAML (d) and BeatAML2
(e) cohorts. Block in center of error bars represent the weighted mean. Whiskers of error bars represent the 95% confidence interval. (f) Comparison of
concordance index (C-index) between ACEsig and the existing deep learning and regression models. C-index ranges from 0.5 to 1, with 0.5 indicating
random prediction. (g and h) The alluvial plots show the relationships between the ACEsig risk groups (left strip) and the cytogenetic risk classifications
(right strip) for TCGA-LAML (g) and BeatAML2 (h) cohorts. The two-sided Fisher’s exact test was used to calculate the P values and asterisks indicate
significant enrichment events. (i and j) K–M curves of OS for ACEsigHi and ACEsigLo groups in TCGA-LAML (i) and BeatAML2 (j) cohorts, analyses were
restricted to cytogenetic intermediate-risk AML patients.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/26/1/bbaf028/7981664 by Xiam

en U
niversity user on 08 February 2025



Deciphering AML cellular ecosystem to improve risk stratification | 13

Figure 7. Performance of the ACEsig in CN-AML and intensively treated AML. (a) K–M curves of OS and DFS for ACEsigHi and ACEsigLo groups in CN-AML
patients from TCGA-LAML, BeatAML2, GSE6891, and GSE165656 cohorts. (b and c) The multivariate cox proportional hazard model analysis in CN-AML
patients from BeatAML2 (b) and GSE6891 (c) cohorts. Block in center of error bars represent the weighted mean. Whiskers of error bars represent the
95% confidence interval. (d) K–M curves of OS and DFS for ACEsigHi and ACEsigLo groups in intensively treated patients from TCGA-LAML, BeatAML2,
GSE6891, and GSE106291 cohorts.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/26/1/bbaf028/7981664 by Xiam

en U
niversity user on 08 February 2025



14 | Zhang et al.

with a poorer prognosis across multiple AML cohorts [67–69].
Otherwise, the ACEsig has no gene overlap with previously
published prognostic models for AML, such as LSC17 [40], thus
representing a unique feature of refractory AML reflecting
unfavorable TME. Considering the combination of common risk
genes (e.g. CALCRL and HOPX) and immune-related markers (e.g.
ID2, LSP1, NPDC1, and IL32) in the ACEsig, this score system may
capture features unrecognized among cytogenetically normal
AML (CN-AML) patients who lack chromosomal abnormalities, a
major prognostic factor in AML. Mutations in specific genes (FLT3
ITD, NPM1, TP53, ASXL1) have been reported to stratify CN-AML
into prognostic subgroups [70]; however, ∼24% of CN-AML cases
lack detectable mutations in these genes [71]. Indeed, our ACEsig
score system accurately reclassified CN-AML patients into high-
risk (ACEsigHi) and low-risk (ACEsigLo) groups, thus improving
the risk stratification in clinical decision. Additionally, our ACEsig
accurately identified AML patients who could benefit from
intensive chemotherapy (Fig. 7). This classification holds clinical
significance by recommending less toxic treatment options
without hematopoietic cell transplantation for the ACEsigLo
group. Collectively, these findings expand our understanding
of cellular ecosystem in AML and provide opportunities for
translation into biomarker and individualized therapy.

This study has some limitations. First, the leukemic and
immune cell states have only been inferred here, not directly
identified [12]; while this represents a limitation, it is also a
strength, as this approach may capture broader gene programs
beyond the current markers. Second, joint analysis of single-cell
transcriptomic and epigenetic profiles by deep learning models
holds the potential to more precisely define cell states [72–74],
which is a future direction for improving our method. Finally, the
genomic or epigenetic landscapes of the cell states identified
in this study remain unexplored due to the lack of relevant
data. Furthermore, future studies on how genomic or epigenetic
alterations might contribute to the ACE would be important
for a more comprehensive understanding of intervention in
AML.

Key Points

• We construct a comprehensive cell state atlas and link
it to clinical variables, drug resistance, and prognosis
in AML.

• We propose the acute myeloid leukemia (AML) cellular
ecosystem (ACE), which comprises a novel leukemic cell
state and various immune cell states, the abundance of
which increases in AML patients with poor survival and
aberrant tumor milieu.

• An ACE-based signature (ACEsig) was developed that
is significantly associated with the prognosis of AML
and demonstrates superior performance compared to
existing prognostic models.

• ACEsig stratifies cytogenetically normal AML (CN-AML)
patients, the largest AML subtype, into high- and low-risk
groups with significantly distinct outcomes.
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online.
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GEO and cBioPortal [79] with the accession numbers listed in
Supplementary Table S2 as well as from supplementary file from
literature.

An accompanying R package (sciNMF) for data exploration
and visualization is available at GitHub repository (https://github.
com/xmuhuanglab/sciNMF).
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