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Abstract

The assay for transposase-accessible chromatin with sequencing (ATAC-seq) identifies chromatin accessibility across the genome,
crucial for gene expression regulating. However, bulk ATAC-seq obscures cellular heterogeneity, while single-cell ATAC-seq suffers
from issues such as sparsity and costliness. To this end, we introduce DECA, a sophisticated deep learning model based on vision
transformer to deconvolve cell type information from bulk chromatin accessibility profiles, utilizing single-cell ATAC-seq datasets
as reference for enhanced precision and resolution. Notably, patch attention generated by DECA’s multi-head attention mechanism
aligns with chromatin interactions detected by Hi-C. Additionally, DECA predicted lineage-specific cell composition changes due to
genetic perturbation. The chromatin accessibility signatures predicted by DECA are enriched with cell-type specific genetic variations.
Ultimately, we applied DECA on pan-cancer ATAC-seq datasets and demonstrated its capability to deconvolve cell type proportions
with clinical significance. Taken together, DECA deconvolves cellular proportions and predicts their chromatin accessibility profiles
from bulk chromatin accessibility data, which enable exploring the gene regulatory programs in development and diseases.
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Introduction
Chromatin accessibility is instrumental in controlling gene
expression programs during in various biological processes
[1]. Assay for transposase-accessible chromatin with high-
throughput sequencing (ATAC-seq) is a robust tool for investi-
gating chromatin landscapes [2, 3]. The emergence of single-cell
ATAC sequencing (scATAC-seq) techniques provide approaches for
assessing chromatin accessibility of individual cells [4, 5]. Several
computational methods have been developed for predicting local
chromatin interactions using single-cell ATAC-seq data, such
as Cicero [6] and JRIM [7]. However, the complexity of library
construction, data sparsity, and high costs limit its widespread
application. Moreover, current methods like fluorescence-
activated cell sorting (FACS) and single-cell multi-omics are also
time- and cost-inefficient for real-time monitoring of cell type
changes caused by non-coding genome perturbations or drug
targeting [8, 9]. Therefore, developing an algorithm to deconvolute
cell type information from bulk ATAC data leveraging the existing
single-cell ATAC datasets can provide a faster and more cost-
effective solution [10, 11].

Deconvolution is complex source separation task [12], where
probabilities are assigned to classification labels rather than
performing a straightforward multi-class classification. This
process is akin to extracting distinct themes from blended text,
capturing the proportions of multiple thematic labels alongside
their respective descriptions [13]. Recently, most computational

deconvolution-related algorithms have faced challenges such
as the quality of reference data, generation of ground truth,
limitations of computational methodologies, benchmark design
and implementation [14]. Existing methods can be broadly
categorized into two types: those based on statistical learning
or deep learning [15]. Examples of such methods include
CIBERSORTx [13], Bisque [16], and DWLS [17], which have been
developed based on traditional regression models like non-
negative least squares (NNLS) and support vector regression
[18]. These tools require pre-selected cell-type-specific features
or embedding features to minimize computational overhead
while maximizing accuracy. In contrast, TAPE [15] and Cellformer
[19] are the deep learning approach that utilizes deep neural
networks (DNNs) and transformer-based framework. The encoder
layer can learn higher-order latent representations, while the
decoder can achieve interpretability within the autoencoder.
However, TAPE is designed for processing transcriptomic datasets.
In the higher-dimensional ATAC dataset, TAPE might disregard
the redundant cis co-accessibility regulatory patterns across
different chromosomes, potentially leading to increased noise
and overfitting [20]. Additionally, chromatin has a higher-order
structure and cis-regulatory elements on accessible regions
exhibit cell-type specify functional hierarchy [21, 22], that
information would lose in most deep learning models.

In order to address these limitations mentioned above, we pro-
posed a precise and interpretable deep learning framework called
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DECA (deconvolution of chromatin accessibility profile) to predict
cell-type proportion and reconstruct chromatin accessibility. The
DECA, by segmenting chromosomes into smaller regions termed
patches, utilizes a multi-head attention mechanism to discern
interrelations among these patches. This approach effectively
reduced the dimensionality of the dataset while capturing patch
interactions highly relevant to cell type specificity [23]. Addi-
tionally, we implemented an adaptive training framework [15] to
optimize prediction outcomes, ensuring the extraction of accurate
feature attention weights throughout the training phase.

We constructed simulation and golden benchmark datasets
to validate the predictive accuracy and robustness of DECA.
The patch-attention weights obtained during the training
phase of DECA are equivalent to extracting crucial chromatin
co-accessibility patterns from redundant data. Based on the
hierarchical structure of chromatin, high-resolution Hi-C data
validated the biological interpretability of these filtered attention
weights. Moreover, we collected comprehensive cutting-edge
research to equip DECA with profound biological insights across
diverse scenarios.

Materials and methods
Data collection and preprocessing
In this study, we conducted experiments using both public bulk
and single-cell ATAC sequencing datasets (Table S1, 2). In this
study, we utilized multiple publicly available single-cell ATAC-
seq and bulk ATAC-seq datasets. For pseudo-bulk testing, we
leveraged single-cell chromatin accessibility profiles from PBMC
[24], liver, heart, thymus [25], and pan-cancer [26] datasets, all of
which included author-annotated cell type labels. We conducted
peak calling on regional and cell type-specific replicates using
the ArchR workflow [27] with its MACS implementation. For bulk
ATAC-seq data processing, we followed a standard pipeline that
included quality control, alignment to the reference genome,
and peak calling. Alignment was performed using the Bowtie2
algorithm [28], followed by the identification of chromatin acces-
sibility regions with MACS2 [29], applying appropriate cutoffs to
ensure robust peak detection. For accurate comparisons, we only
considered shared accessibility regions that were present in both
datasets. To facilitate optimal learning from both datasets with
differing resolutions, we employed min-max normalization strat-
egy to adjust for discrepancies in sequencing depth and cellular
heterogeneity between the bulk and single-cell datasets.

Simulated datasets benchmarking quantification
To optimize the default parameters of DECA, we generated simu-
lation datasets. We opted for single-cell dataset from bone mar-
row (BM) samples from healthy donor from Granja et al. [24]. This
dataset encompasses 12 cell types with precise cell type labels.
The widespread utility of the model was demonstrated across
multiple tissues as documented by Zhang et al. [25], which include
thymus, liver and heart samples.

Golden datasets benchmarking quantification
Additionally, we collected some golden benchmark datasets,
wherein samples from the same multi-brain-tissues (caudate,
parietal lobe, hippocampus, and substantia nigra), healthy BM
and acute myeloid leukemia (AML) samples were characterized
with both bulk ATAC and single-cell ATAC sequencing datasets
from the same sample. To assess the generalizability of our model,
we applied the same parameter combinations that we used with

the simulated datasets. This enables for genuine assessment of
DECA accuracy.

Biological insight datasets benchmarking
quantification
The feasibility of the model was validated through various
aspects, including cell-type differentiation induced by genetic
perturbation in hematopoietic lineage [30], enrichment of cell
type-specific genetic variation [31, 32] and interpretation of the
pan-cancer tumor proportions for clinical stages and prognosis
statuses [33].

To predict the differentiation of cell types following the genetic
perturbation of transcription factors in hematopoietic lineage,
we utilized single-cell ATAC mouse atlas from Cusanovich et al.
[34]. This atlas covers 13 different organs and tissues, with only
BM tissue chosen for pseudo-bulk generation. For predictions, we
selected bulk ATAC datasets from hematopoietic lineage after the
knockout of regulatory factors [30], which include Smarcd2, Brd9,
Rcor1, Chd4 and Rbbp4.

In the section focused on identifying cell-type specific genetic
variation, we employed 32 immune cell subtypes obtained
through Calderon et al. as training references [31]. The library
of cell-type specific eQTLs were derived from Ota et al. [32] and
the enrichment of SNP were calculated by SNPsea [35].

For the interpretation of the pan-cancer tumor clinical classifi-
cation and prognosis statuses, we employed human cancer single-
cell ATAC atlases from Terekhanova et al. [26] and human cancer
bulk ATAC atlases from Corces et al. [33]. Through matching, we
obtained six cancer datasets (breast cancer [BRCA], skin cuta-
neous melanoma [SKCM], endometrioid cancer [UCEC], glioblas-
toma [GBM], head and neck cancer [HNSCC], and cervical cancer
[CESC]) with complete clinical information.

The DECA framework
As shown in Fig. 1, DECA consists of five modules: simulation of
pseudo-bulk samples, preparation of Transformer patches input,
model structure, adaptive training, and interpretability.

Simulation of pseudo-bulk samples
In model construction, generating pseudo-bulk samples from
single-cell datasets is essential for training. These pseudo-bulk
datasets, derived from single-cell ATAC data with precise cell
type labels, are used for training, loss gradient computation,
and performance optimization. Following the TAPE method [15],
utilizing Dirichlet distribution to simulate the combination of
cell type proportions [36]. This approach model diverse biological
scenarios, including "Dominant" (when a cell type exceeds 50%),
"Rare" (when proportions are below 5%), and "Average" (when
proportions are nearly equal).

Model set-up
Splitting accessible regions into patches for embedding
To enhance the Vision Transformer’s processing quality and
speed, we leveraged the regulatory relationships between
accessible regions. Chromosomes were split into distinct input
channels, with each open region converted into corresponding
patches for embedding. We designed j distinct trainable linear
projections (Fig. 1B-C), encompassing both LayerNorm (LN) and
Multi-Layer Perceptron (MLP) components [37]. Each patch Pj is
transformed, generating an embedding for accessible patches
denoted as Nj ∈ Rd, where d represents the embedding dimension.
Simultaneously, a learnable parameter class token Pcls ∈ Rd
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Figure 1. DECA architecture and applications. DECA is a high-resolution deep learning framework for deconvolution from bulk ATAC datasets, predicting
cell type proportions and chromatin accessibility matrices. (A) DECA, grounded in single-cell datasets, explores diverse proportion combinations in
subpopulations, integrating Random, Rare, Dominant, and Average groups. (B) DECA involves segmenting accessible regions into varying patch sizes. (C)
DECA utilizes patches as input for vision transformer (encoder) to capture the proportion information. (D) Supervised training uses generated ground
truth for performance evaluation. (E) Biological insights from bulk chromatin accessibility research, including genetic perturbation, genetic variation
and clinical application, are illustrated (created with BioRender.com).

is appended to the patch embedding vectors [37, 38]. The
concatenation of these embeddings from X0, subsequently input
into the encoder layer. This approach provides these processes
with both the enriched contextual information from the patch
embedding and the essential global information carried by the
class token. The weight parameters θj represent the MLP’s linear
projection components (Fig. 1).

Nj = MLPj
(
LN

(
Pj

)
; θj

)
# (1)

X0 = [
Pcls; N1; N2; . . . ; Nj

]
# (2)

Vision transformer
To capture intricate features and relationships in accessible
region, we used the vision transformer to glean insights from
patch embeddings. The vision transformer Encoder comprised L
layers of multi-head self-attention (MSA) and MLP blocks [39].
Layer normalization (LN) was applied before each block, and
residual connections were incorporated after each block. The
MSA extended self-attention (SA) by concurrently executing
k self-attention operations, referred to as "heads", and then
projected their concatenated results. For each element in the
input X ∈ R1+m×d, query (q), key (k), and value (v) were

computed by linearly projecting the input X with parameters
Wq,k,v ∈ Rd×3 d

m .

q, k, v = X· Wq,k,v# (3)

SA (X) = v· softmax
(

q·kT√
d
m

)
# (4)

MSA (X) = [SA1 (X) ; SA2 (X) ; . . . ; SAk (X)] # (5)

By inputting the patch embedding X0 ∈ R1+m×d into the vision
transformer encoder, we obtained holistic biological feature repre-
sentation Xl that was further used to predict cell-type proportions.

Xl
′ = MSA (LN (Xl−1) ; α) + Xl−1, l = 1 . . . L# (6)

Xl = MLP
(
LN

(
Xl

′) ; β
) + Xl

′, l = 1 . . . L# (7)

where α and β were the weight parameters of MSA and MLP in
vision transformer encoder (Fig. 1C).

Cell-type proportions head
Typically, in multi-class classification tasks, the classification
head comprises LN and an MLP structure [39]. However, our
task was not a straightforward multi-class classification task.
In the output process of the MLP, due to the relatively large
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bias in softmax, we chose to substitute it with sigmoid instead
(Fig. 1C). Classification head was attached to X0

L, representing the
class token Tcls learned from the vision transformer encoder,
where ω was the weight parameters of MLP in classification
head. p = sigmoid

(
MLP

(
LN

(
X0

L

)
; ω

))
(8.)

Decoder layer
To enhance DECA’s predictive capability for chromatin accessibil-
ity in accessible regions (M), fγ is designed as a model without
activation layers or biases. It is solely the regularization of the
dot product of five weight matrix. Therefore, in this deep learning
model, the chromatin accessibility matrix is visible:

M = fγ = ReLU (W1· W2· W3· W4· W5) (9)

The rationale behind formulating such an equation to repre-
sent M, instead of a singular matrix, is that incorporating more
parameters facilitates the model in learning swiftly and effort-
lessly (Fig. 1).

Adaptive training process
As previously noted, DECA training occurs in two phases. In the
first phase, a large set of pseudo-bulk datasets is used. Each
epoch (e) produces two outputs: cell type proportions (P) and
the chromatin accessibility matrix (M). To improve accuracy and
speed, we adopt a TAPE-inspired adaptive training framework
using a greedy iterative optimization approach. Step 1: Using the
Mean Squared Error (MSE) loss function to optimize the decoder
until the MSE results no longer decrease. Step 2: Using the MSE
loss functions (MSE(P, P̃) + MSE(M, M̃)) to optimize the encoder
until MSE(P, P̃) no longer decreases (Fig. 1). Here, P̃ and M̃ are
the results post-initial training. This method refines encoder and
decoder parameters based on the MSE between predictions and
ground truth, and between reconstructed and original inputs.

MSE
(
P, P̃

)
= 1

n

∑n

i=1

(
Pi − ˆ

Pi

)2

(10)

MSE
(
M, M̃

)
= 1

n

∑n

i=1

(
Mi − ˆ

Mi

)2

(11)

Performance evaluation
The linear consistency between the synthetic cell type propor-
tions in pseudo-bulk samples and the predicted proportions of
cell types is rigorously evaluated using three metrics: Lin’s Concor-
dance Correlation Coefficient (CCC), Mean Absolute Error (MAE),
and Spearman’s rank Correlation Coefficient (r). The formulas for
these metrics are as follows:

CCC = 2· cov (X, Y)

var (X) + var (Y) +
(
X − Y

)2 (12)

MAE
(
X, X̃

)
=

∑
i,j

∣∣∣Xi,j − X̃i,j

∣∣∣
n × k

(13)

r
(
R

(
y
)

, R
(
ŷ
)) = cov

(
R

(
y
)

, R
(
ŷ
))

σyσŷ
(14)

For each sample, we compute CCC and MAE to assess the
model’s specificity and identify overlooked cell types. This helps
iteratively adjust training sample distribution, optimize data pro-
cessing, and refine hyperparameters.

Results
DECA overview
DECA is an open-source deep learning framework designed for
cell type deconvolution from bulk chromatin accessibility profiles,
drawing on the redundant characterization of cell types from
scATAC datasets. To handle the challenges of high-dimensional
and sparse scATAC datasets and chromatin interactions, DECA
integrates vision transformer (ViT) [37] and decoder architec-
tures (Fig. 1). Initially, we created pseudo-bulk samples by ran-
domly combining cells with precise labels, following the Dirich-
let distribution (Fig. S1A-D, Fig. S2A-B). These samples reflect
various distributions, including Random, Rare, Dominant, and
Average (Fig. 1A, see Methods). Next, we extracted consensus
chromatin accessible regions shared between single-cell and bulk
ATAC datasets, segmenting them by chromosome to focus on
interactions within the same chromosome. These regions were
then divided into patches for DECA input (Fig. 1B).

Third, DECA employs ViT and decoder architectures, where
the encoder mimics initial feature processing by ViT, partitioning
features into sub-patches with recorded positional embeddings
(Fig. 1C). Cell type proportions are predicted using a MLP head
and sigmoid output layer, combined with five linear decoder
layers to reconstruct the chromatin accessibility matrix (Fig. 1C).
A supervised adaptive training process involves computing MSE
for encoder and decoder predictions, optimizing through iterative
loss adjustments (Fig. 1C-D, Fig. S2C-D).

Finally, to validate DECA’s interpretability, we explored biologi-
cal insights including: I. Predicting hematopoietic lineage changes
due to genetic perturbation; II. Identifying immune cell type-
specific genetic variations; III. Inferring tumor cell proportions
with clinical relevance from pan-cancer ATAC datasets (Fig. 1E).

Accuracy and stability evaluation on simulated
datasets
To evaluate DECA’s performance, we simulated pseudo bulk
ATAC datasets by merging single cells from peripheral blood
mononuclear cells (PBMC), thymus, liver, and heart datasets
[24, 25] (Fig. 2A, Table S1, see Methods). This established a
ground truth with known cell type proportions and chromatin
accessibility. After extensive training, DECA achieved a high
spearman correlation coefficient of 0.98 between predicted and
actual cell type proportions in the PBMC simulation samples
(Fig. 2B, Fig. S3A).

DECA also effectively reconstructed cell-type-specific chro-
matin accessibility profiles. The correlations between recon-
structed and true chromatin accessibility matrices for each cell
type were significant, with notable similarity in accessibility pro-
files within lymphoid and myeloid lineages (Fig. 2C, Fig. S3B). The
mean absolute error (MAE) and Lin’s concordance CCC indicated
strong and unbiased performance (Mean (MAE) = 0.023, Mean
(CCC) = 0.96) for PBMC dataset predictions (Fig. 2D, Fig. S4A-B).
Furthermore, when we select test datasets from different batch
studies, the prediction accuracy for the pseudo-bulk model
remains consistently robust (Fig. S5A-C).

Additionally, we compared DECA with five deconvolution
methods: non-negative least-squares regression (NNLS, Bisque)
[16], weighted least squares approach (DWLS) [17], linear
regression (CIBERSORTx) [13], deep learning method DNN-
based autoencoder (TAPE) [15] and transformer-based separator
(Cellformer) [19] (Table S3). Within datasets pertaining to the
thymus, liver, and heart [25], DECA outperformed these methods
in deconvoluting simulated bulk samples from thymus, liver,
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Figure 2. Performance evaluation of DECA on simulation datasets. (A) The schematic diagram depicts the single-cell ATAC datasets from various tissue:
PBMC, thymus, liver and heart. (B) The scatter plot represents correlation within PBMC samples. The x-axis represents the cell-type proportion of
ground truth, while the y-axis represents the predicted proportion. (C) The heatmap illustrates the spearman correlation between ground truth and
reconstructed chromatin accessibility matrices for PBMC samples. P-values were calculated using a two-tailed Spearman rank correlation test. ∗P < 0.05;
∗∗P < 0.01; ∗∗∗P < 0.001; n.s., not significant. (D) Bar plots of DECA accuracy: Lin’s concordance correlation coefficient (CCC) and mean absolute error
(MAE), where higher CCC and lower MAE indicate better performance (see Methods). (E) These scatter plots of correlations for pseudo-bulk samples
using various deconvolution methods (Bisque, DWLS, CIBERSORTx, TAPE, Cellformer) across multi-tissue datasets. (F) These box plots of CCC and MAE
for different methods (Bisque, DWLS, CIBERSORTx, TAPE, Cellformer) across multi-tissue datasets. (G) These bar plots of predicted proportions in pseudo-
bulk ATAC datasets with different distributions (yellow for actual, blue for predicted).
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Figure 3. Performance evaluation of DECA on golden benchmark datasets. (A) Schematic of golden benchmark datasets, including single-cell and bulk
chromatin accessibility profile from the same donor, covering human brain, healthy bone marrow (BM), and acute myeloid leukemia (AML). (B) These
bar plots show predicted (blue) vs. single-cell ground truth (yellow) proportions across four brain regions: caudate, substantia nigra, parietal lobe, and
hippocampus. (C) Schematic of DECA predictions for BM and AML samples with different training references. (D) Bar plots of each reference-based
predicted (green, red) vs. ground truth (grey) proportions for BM and AML.

and heart datasets, achieving spearman coefficients of 0.99,
0.98, and 0.96, respectively, reflecting strong correlations with
synthetic ground truth (Fig. 2E). DECA also demonstrated the
best MAE and CCC across various datasets, highlighting its
superior performance over existing methods (Fig. 2F). In addition
to accuracy and stability, the scalability of the DECA is also crucial
for practical applications. Therefore, we evaluated the impact of
key hyperparameters within DECA on model performance. We
assessed DECA’s performance with varying patch sizes (10, 20, 50,
100, 250, 500). The results indicate that patch size influences both
training efficiency and performance, but these effects appear
to no significant linear trend (Fig. S6A). Therefore, we choose a
patch size of 50 for the remaining analysis, balancing prediction
accuracy with model interpretability in capturing chromatin
accessibility interaction. Additionally, we measured both memory
usage and runtime for each tool. Memory usage was comparable
across DECA, Cellformer, Bisque, DWLS (Fig. S6B). DECA exhibits
moderate runtime, which is longer compared to TAPE, Cellformer,
and Bisque, but shorter than DWLS (Fig. S6C).

Considering variations in cell type distributions, DECA was
trained on different combinations (Dominant, Rare, Average) (see
Methods). Specifically, Lymphoid-primed multipotent progenitors

(LMPPs), key in lymphocyte development, were prominent in the
"Dominant" state [40] (Fig. 2G). Disease samples like B lymphoma,
where B cells are challenging to distinguish, were considered in
the "Rare" state [41] (Fig. 2G). And the state of "Average" demon-
strates the robustness of DECA in predicting various cell types
(Fig. 2G). Taken together, DECA shows strong predictive capability
and versatility, making it applicable across various tissues.

Performance evaluation on golden benchmark
datasets
We next test the performance of DECA on the golden benchmark
datasets which were comprised of single-cell ATAC and bulk
ATAC datasets obtained from the same samples. To this end, we
collected datasets from human brain [42], along with healthy BM
and AML samples [11] (Table S1, 2, Fig. 3A, see Methods).

The human brain dataset contained four regions of the same
donor: the caudate, substantia nigra, parietal lobe, and hippocam-
pus. Using scATAC as reference for training, and perform DECA
predictions on bulk ATAC datasets, we observed that DECA swiftly
identified "Dominant" and "Rare" cell types within bulk ATAC
datasets, such as oligodendrocytes in each region and nigral
neuron within caudate region (Fig. 3B, blue). These findings
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were consistent with reference annotations found in single-
cell datasets (Fig. 3B, yellow), providing DECA insights into the
dominant cell types involved in the epigenetic regulation of motor
control, cognition, attention, and memory at bulk resolution.

To ensure whether DECA is affected by differences in the train-
ing dataset, such as batch effects. We utilized publicly available
single-cell ATAC datasets from another PBMC sample [24], as well
as AML and BM [11], as training references separately (Fig. 3C). The
results show that relatively consistent cell type proportions, fur-
ther validating DECA’s robustness to batch effects (Fig. 3D, green,
red). We observe significant differences in the distribution of cell
proportions between BM and AML, with notable alterations in the
proportions of hematopoietic stem cells (HSC) (Fig. 3D, green). Pre-
vious studies have revealed parallels between leukemic stem cells
and HSCs, particularly those enriched in AML [43]. By using the
golden benchmark single-cell dataset as training for predictions,
DECA could discern comparable cell type proportion distributions
and accessibility profile in the bulk dataset, aligning with the
aforementioned results (Fig. 3D, red, grey, Fig. S7–8). These results
also revealed DECA’s strong capability to eliminate batch effects
in diverse training references. Furthermore, the ‘Rare’ state of
T/NK cells also be observed (Fig. 3D, red, grey) in BM samples,
and the proportions of HSC-like, GMP-like, and Mono-like cells
closely mirrored those annotated in the original AML single-cell
dataset Fig. 3D, red, grey). Nevertheless, certain inconsistencies
surfaced, notably the fluctuating proportion of MkP-like cells in
AML samples (Fig. 3D, red, grey). However, there has some vari-
ability might be attributed to differences in library construction
between single-cell sequencing and bulk sequencing, leading to
distortions in the distribution of certain cell types [3].

Overall, these results suggest that DECA perform effectively in
golden benchmark datasets, accurately reconstructs the underly-
ing cell-type specific chromatin accessibility and capably elimi-
nate batch effects during the training phase.

The patch-attention generated by DECA
associates with hi-C-detected chromatin
interactions
The primary strength of DECA lies in its ability to purify cell-type-
specific patch attention by utilizing the comprehensive extraction
of chromatin accessibility. In previous studies, researchers have
found that chromatin possesses higher-order structure, and cis-
regulatory elements located in accessible regions exhibit cell-
type-specific functional hierarchies [21, 22]. High-throughput
chromosome conformation capture (Hi-C) sequencing technology
can detect chromatin interactions [21, 44–46]. We hypothesize
that the presence or absence of chromatin interactions is crucial
for cell-type specificity and the multi-head attention mechanism
in DECA can reflect long-distance chromatin interactions.

Interestingly, we obtained the weights of the attention
mechanism between different accessible regions (patches) on
the same chromosome during the training process of PBMC
datasets [24] (Fig. 4A, see Methods). We compared the attention
weights with the Hi-C interactions for each chromosome in K562
(erythroleukemia cells) [47] (Fig. 4B-C). Moreover, compared to the
chromatin co-accessibility tools Cicero and JRIM, DECA identified
similar interaction patterns, with Hi-C interactions serving as the
gold standard for positive validation (Fig. S9A-B). To quantify and
validate these similarities, we systematically selected patches
characterized by high absolute values of patch-attention weights
and Hi-C interaction strength, which predominantly coincided
with distinct overlap genome location (Fig. 4A). During the
comparison process, we employed permutation test to perturb

the genomic positions of Hi-C interactions, and assessed the
statistical significance of the overlap calculation (Fig. 4D). This
observation suggested that ATAC datasets trained within DECA
could partially capture chromatin structure, with the patch-
attention weights potentially mirroring interactions among
accessible regions. We classified attention weights into High,
Median, and Low categories and analyzed their correlation with
Hi-C signals across various chromosomal regions. High and
Median attention showed significantly stronger Hi-C interactions
than Low attention (Fig. S9C). Assessing the magnitude of patch-
attention values, we segregated them into two distinct categories
and probed the interaction intensity between accessible regions
among overlap locations, revealing that these compressed
attention weights exhibited heightened genome interaction
(Fig. 4E).

Collectively, these results demonstrate that DECA possesses
biologically interpretable strengths, where the trained attention
weights correlated with chromatin interaction patterns on the
same chromosome.

DECA reveals lineage-specific cell-type
composition altered by genetic perturbation
Lineage differentiation involves extensive chromatin modifica-
tions guided by chromatin and transcription factors [48, 49].
Recent studies by Lara-Astiaso et al. identified 142 lineage-
specific chromatin factors in mice, highlighting their role in
regulating myeloid differentiation [30]. We tested DECA’s ability
to predict these findings using a single-cell atlas of mouse BM
hematopoietic lineages, including hematopoietic progenitors,
erythroblasts, dendritic cells, macrophages, and monocytes
(Fig. 5A, see Methods). DECA achieved a high correlation of 0.99
between predicted and actual values for pseudo-bulk samples
(Fig. 5B). Additionally, DECA effectively traced hematopoietic
progenitor lineage to myeloid and erythroid lineages, showing
strong correlations (Fig. 5C). And the assessments for each cell
type prediction were conducted using MAE and CCC (Mean
[MAE] = 0.02, Mean [CCC] = 0.98, Fig. 5D).

In the aforementioned genetic perturbation experiments [30],
Lara-Astiaso et al.’s experiments on knockouts of Smarcd2, Brd9,
Rcor1, Chd4, and Rbbp4 revealed their importance in hematopoi-
etic stem cell differentiation, confirmed by FACS (Fig. 5E). DECA’s
predictive analysis of bulk ATAC datasets replicated these find-
ings, showing that Smarcd2 and Brd9 knockouts inhibited myeloid
differentiation while promoting erythroid differentiation, com-
pared to the non-treated control (NTC) group (Fig. 5F). Similarly,
the knockout of Rcor1, Chd4, and Rbbp4 in vitro cultures of multi-
potent progenitors (Lin − Sca1 + c-Kit+, LSKs) resulted the sharp
accumulation of erythroid (Fig. 5G). This finding is consistent
with Lara-Astiaso et al. that suggested the NuRD (Chd4) complex
repressive activity proved crucial for terminal erythropoiesis and
its depletion induced the accumulation of aberrant erythroid cells
[30]. Taken together, these results suggested DECA’s capability to
reveal cell-type composition changes due to genetic perturbations
in lineage-specific chromatin factors based on bulk chromatin
accessibility profiles.

Chromatin accessibility signatures inferred by
DECA is enriched for cell-type-specific genetic
variation
Genetic studies have identified numerous variant loci associ-
ated with immune-mediated diseases [50]. Understanding the
pathogenic mechanisms of these diseases requires insights into
the functionality of these genetic variants, particularly under
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Figure 4. Revealing biological interpretation of the patches-attention generated during DECA training phase. (A) Diagram of attention calculation among
patches and its biological interpretation (see Methods). (B) Heatmaps of Hi-C interactions at 20kb resolution across chromosomes. (C) Heatmaps of patch
attention weights generated by DECA (see Methods). (D) Venn diagrams showing overlap between genomic locations with high Hi-C interactions and
regions with high patch attention weights. The p-values between clinical stages were calculated using permutation testing (50,000 iterations), ∗P < 0.05;
∗∗P < 0.01; ∗∗∗P < 0.001; n.s., not significant. (E) Bar plots of intersecting results between high- and low-attention patches, with line plots using KDE
(Kernel Density Estimation) to estimate the probability density function of continuous variables.

disease-relevant conditions. eQTL and SNP analyses have revealed
dynamic genetic variability across various immune conditions
and cell types [51], providing a basis to validate DECA’s ability to
reconstruct functional chromatin accessibility.

We used the chromatin accessibility atlas of immune cell types
stimulated in vitro, obtained through FACS-based sequencing by
Calderon et al. [31], as training references (Fig. 6A). DECA achieved
a high correlation of 0.97 between predicted and actual values
(Fig. 6B). The predictions for each cell type were assessed with
MAE and CCC, showing a mean MAE of 0.02 and a mean CCC
of 0.95 (Fig. 6C). Intriguingly, even when proportions of twenty
cell types were randomly masked during training, DECA accu-
rately predicted cell type proportions from bulk samples (Fig. 6D),
indicating its capability to handle diverse cell types and without
significant bias.

We further investigated cell-type-specific chromatin accessi-
bility by analyzing eQTL enrichment identified by Ota et al. [32]
(Fig. 6E). DECA’s reconstructed chromatin accessibility matrix was
used to identify accessible regions specific to certain cell types,

revealing significant overlaps with eQTLs and differentially acces-
sible regions (Fig. 6F). SNPsea analysis also showed significant
enrichment of cell-type-specific SNPs within the peaks extracted
by DECA across all examined cell types [35] (Fig. 6G). Therefore,
DECA effectively reconstructs cell-type-specific chromatin acces-
sibility and links these features to disease phenotypes in bulk
ATAC datasets.

Deconvolution on pan-cancer ATAC-seq datasets
provides clinical significance
ATAC-seq datasets can be transformed into three distinct data
dimensions: continuous bins, peaks, and genes. The vast feature
embedding of bins, which spans the entire genome, results in
billions of features and significant computational challenges [52].
Peaks, being non-predefined and variable across datasets, compli-
cate the direct application of pre-trained models. Therefore, uni-
formity in peak calling and invocation processes is essential (see
Methods). In this section, DECA also utilized gene activity scores
from human cancer single-cell ATAC atlases from Terekhanova
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Figure 5. Revealing biological insight of cell-type proportion utilizing perturbation data. (A) Diagram showing public scATAC datasets from mouse bone
marrow, including five major cell types. (B) The scatter plot represents correlation within mouse bone marrow samples. The x-axis represents the cell-
type proportion of ground truth, while the y-axis represents the predicted proportion. (C) Heatmap validating DECA-generated chromatin accessibility
matrices against ground truth using Spearman correlation. P-values were calculated using a two-tailed Spearman rank correlation test. ∗P < 0.05; ∗∗P
< 0.01; ∗∗∗P < 0.001; n.s., not significant. (D) Bar plots of DECA prediction accuracy for mouse bone marrow: MAE for prediction accuracy and CCC
for consistency with ground truth. (E) Diagram of public bulk ATAC datasets from knockout mice with different transcription factor complexes. (F-G)
Bar charts of DECA’s predictions on cell-type proportion changes after transcription factor perturbations in hematopoietic lineage (non-treated control
(NTC), Smarcd2, Brd9, Rcor1, Chd4, Rbbp4; see Methods).
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Figure 6. Revealing biological insight of cell-type chromatin accessibility utilizing genetic variation data. (A) Diagram of ATAC datasets from stimulated
immune cells in human blood, used for DECA training. (B) The scatter plot represents correlation within immune cell-type atlas samples. The x-axis
represents the cell-type proportion of ground truth, while the y-axis represents the predicted proportion. (C) Bar plots of DECA prediction accuracy for
the immune atlas: MAE for accuracy and CCC for consistency with ground truth. (D) Bar plots showing similarity between ground truth and predicted
cell-type proportions from masked training. (E) Diagram illustrating the use of DECA-generated chromatin accessibility matrices to identify cell-type-
specific genetic variations and the overlap between DECA predictions and genetic variations identified by Ota et al. (F) The heatmap shows chromatin
accessibility profiles across immune cell types predicted by DECA. Red indicates accessible regions, and blue indicates low accessibility. Cell type-specific
peaks highlight chromatin regions unique to each immune cell type. (G) Radar plots showing the enrichment of immune cell-type-specific eQTLs in
the specific peaks identified by DECA. Each axis represents an immune cell type, and the plot illustrates the number of overlapping eQTLs between
the chromatin accessibility peaks and cell-type-specific eQTLs. These heatmaps and bar plots show cell-type specific SNPs. In the SNPsea analysis, the
top cell types with the most significant enrichment on the specific and background peaks identified in the DECA-reconstructed chromatin accessibility
profile. The red bars highlight the results with the most significant one-sided P-values. The heatmap displays the Pearson correlation coefficients,
ordered by hierarchical clustering using the unweighted pair-group method with arithmetic means (UPGMA).
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Figure 7. Deconvolution benchmark on pan-cancer datasets with clinical information. (A) Schematic of converting chromatin accessibility matrices into
gene activity matrices. (B) Bar plot showing the number of bulk tumors ATAC samples from TCGA. (C) Scatter plot of pseudo-bulk samples, comparing
ground truth (x-axis) and predicted proportions (y-axis). (D) Box plots of Lin’s concordance correlation coefficient (CCC) and mean absolute error (MAE)
for different deconvolution methods (Bisque, DWLS, CIBERSORTx, TAPE, Cellformer) across pan-cancer datasets (BRCA, CESC, GBM, HNSCC, SKCM,
UCEC). (E) Violin plots of predicted tumor cell proportions in samples from patients at different grading stages, colored by different grading strategies.
The p-values between clinical stages were calculated using permutation testing (50,000 iterations). (F) Kaplan-Meier survival curves showing the impact
of predicted tumor cell proportions on patient outcomes (top: BRCA; bottom: pan-cancer).

et al. [26] as training references, and prediction for human cancer
bulk ATAC atlases from Corces et al. [33]. The datasets included
pan-cancer ATAC-seq data from various cancers such as BRCA,
CESC, GBM, HNSCC, SKCM, and UCEC (Fig. 7A-B). This allowed

DECA to operate within smaller feature embeddings. In the decon-
volution of pseudo-bulk samples [33], DECA achieved correlations
of 0.92, 0.98, 0.96, 0.95, 0.96, and 0.96 between predicted and actual
values (Fig. 7C, Fig. S10A-B).
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Comparative analysis showed DECA outperformed Bisque,
DWLS, CIBERSORTx, and TAPE, with MAE of 0.023 and CCC
of 0.96 (Fig. 7D). DECA also identified cell-type-specific gene
activity and pathway enrichments that aligned well with known
markers (Table S4). We opted for permutation testing to assess the
statistical significance between tumor proportions and clinical
stages. The results indicate that BRCA and SKCM are statistically
significant, while non-significant findings may be influenced by
sample size and missing stage information (Fig. 7E). Moreover,
DECA-predicted higher tumor proportions are linked to worse
prognosis and shorter survival (Fig. 7F). Notably, DECA’s predicted
tumor proportions correlated with clinical stages and survival
status from TCGA samples, reflecting its clinical relevance [53–
56]. These findings underscore DECA’s role in identifying clinically
significant cell types from ATAC datasets.

Discussion
The bulk ATAC sequencing technique [2, 3] is extensively used
for exploring chromatin accessible regions in various biological
contexts related to epigenetic regulation. Single-cell ATAC-seq,
while effective for detecting chromatin accessibility in specific
cell types, can be costly and may result in significant missing
events in the open chromatin matrix, potentially obscuring posi-
tive results [4, 5]. Currently, methods for deconvolving accessible
sequencing datasets from bulk tissue to obtain cell-type spe-
cific states and chromatin accessibility information are limited
[19, 57, 58].

To address this, we developed a deep learning-based model
called DECA, specifically designed for ATAC datasets. DECA
segments chromosomes into equally sized patches, which are
then processed using a ViT [37]. The multi-head attention mech-
anism of ViT enables DECA to capture long-range dependencies
within sequences, facilitating a comprehensive understanding of
co-accessibility patterns in the genome and effectively extracting
relevant features from the patches [39]. DECA’s key innovations
include:

1. Utilizing ViT’s multi-head attention to segment chromo-
somes into different patches, capturing attention weights
between patches to better identify consensus features of
accessible regions for cell-type identification.

2. Offering an adaptive open-source training framework
for deconvolving multiple tissues, determining cell type
proportions and chromatin accessibility within bulk samples
to reveal genomic patterns.

DECA also shows strong biological interpretability. The patch-
attention weights obtained during training exhibit topologically
associated domain boundaries similar to Hi-C [21, 44–46], high-
lighting ViT’s advantage in capturing long-range dependencies.
However, patch-attention does not effectively capture the inter-
actions between adjacent patches as accuracy as Hi-C. This might
be related to factors such as DECA’s sparse attention mechanisms
or hard selection strategies, and the absence of Hi-C data during
the training phase. DECA’s performance was validated using brain,
BM, and acute myeloid leukemia (AML) samples, where it demon-
strated superior results on benchmark datasets and effectively
predicted cell type proportions and functional chromatin accessi-
bility [30–32, 34]. However, we also observed moderate divergences
between prediction and real cell type proportion for certain cell
types in specific brain regions, such as inhibitory neurons in

the substantia nigra. Although we excluded this is due to the
specific cell-type biases during the DECA training phase (Fig. S11),
it requires further exploration and validation in the future. Finally,
deconvolution of gene activity matrix obtained from pan-cancer
ATAC datasets revealed the significant superiority of DECA in low-
dimensional [26, 33].

Despite its strengths, DECA relies on reference ATAC datasets
from labeled single-cell or FACS-selected data, necessitating
careful data preprocessing. In conclusion, DECA provides a cost-
effective, efficient method for analyzing chromatin accessibility
related to cell specificity and disease progression, offering
valuable insights for epigenetic research.

Key Points

• DECA, a ViT-based deep learning model, to capture con-
sensus features of cell-type-specific accessible regions
using multi-head attention.

• DECA learns TAD-like boundary structures during train-
ing and effectively reflects changes in cell composition
due to genetic perturbations, cell-type variation, and
pan-cancer clinical relevance.

• DECA outperformed existing deconvolution methods in
performance, robustness and strong biological inter-
pretability on profound biological insights across diverse
scenarios.

Supplementary data
Supplementary data is available at Briefings in Bioinformatics
online.
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(GSM3034623), as well as immune cell-type data (GSE129785)
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Benchmark comparison and settings for
existing methods
To evaluate the performance of DECA compared to the exist-
ing methods, we selected several representative approaches for
comparison. Benchmark tests for deconvolution performance on
simulation and golden benchmark datasets were conducted using
CIBERSORTx, DWLS, TAPE, and Bisque.

(i) Bisque (v 1.0.5, https://github.com/cozygene/bisque, data
pre-processing is done by Biobase (R package), and feature
extraction uses the function Reference Based Decomposition.

(ii) CIBERSORTx (https://cibersortx.stanford.edu/index.php)
(iii) DWLS (https://github.com/dtsoucas/DWLS)
(iv) TAPE (v1.1.2, https://github.com/poseidonchan/TAPE, data

pre-processing is carried out using Pandas).

The mentioned methods were tested following the guidelines
and tutorials provided by their respective software packages
(Table S3).

Data and code availability
For future research, the open-source implementation of DECA is
available at https://github.com/xmuhuanglab/DECA.
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